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1. Rotational Tunneling
Rotational tunneling describes the phenomenon of

the librational states of a molecule whose rotating
atoms are indistinguishable, e.g., all protons, being
multiplets. The splitting between the substates is
called tunnel splitting.
In a Gedanken experiment one can prepare a

molecule with a well-defined orientation. This is
equivalent to having fixed labeled protons of the
molecule (numbers 1 to N) on labeled sites (position
of the numbers in the N-tuple characterizing the

molecular orientation). In case of methyl groups (N
) 3) one of the three possible pocket states may be
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written as |123〉. This pocket state is not an equi-
librium state. It develops according to the laws of
quantummechanics: it oscillates between equivalent
orientations |123〉 f |231〉 f |312〉 f etc. The
oscillation frequency is called the tunnel frequency
and depends on the overlap of the pocket states which
is mainly determined by the strength of the rotational
potential. Since such transitions from one pocket
state (orientation) to another are equivalent to per-
mutations of the rotor atoms, the name of “permu-
tational tunneling” is proposed for the phenomenon.1
The size of a tunnel splitting is determined by the

inertial properties of the molecule and the rotational
potential. Large tunnel splittings are found for light
molecules in weak potentials. The molecule with the
largest rotational constant B ) p2/(2I), where I is the
momentum of inertia, is hydrogen H2. The rotors
with the next largest rotational constants are the
ammonium ion NH4

+, ammonia NH3, and the hydro-
carbons CH4 and -CH3. The rotational constants are
generally taken as material independent and calcu-
lated on the basis of average structural molecular
parameters. This assumption might not be com-
pletely right but is certainly close to reality. The
rotational constants are B(CH3) ) B(CH4) ) 0.655
meV, B(NH3) ) B(NH4

+) ) 0.782 meV and for
comparison B(H2) ) 7.3 meV. For one-dimensional
rotation B refers to rotation about the symmetry axis.
The mentioned molecules, ions, or radicals are

present in a large number of interesting compounds
and thus open a huge field for spectroscopy. Except
for their deuterated analogues with half the respec-
tive rotational constants no heavier systems have
been studied so far with neutrons.

1.1. Neutron Scattering from Tunneling Molecules
The phenomenon of rotational tunneling became

accessible to neutron spectroscopy with the develop-
ment of high-resolution neutron spectrometers in the
1970s. Three axes and time of flight spectrometers
using cold neutrons reached an energy resolution of
about 10 µeV while the backscattering technique,
newly developed at that time, gave a resolution of
about 0.1 µeV. The first publications on rotational
tunneling using inelastic neutron scattering (INS)
techniques appeared around 1975.2,3 After an initial
period, mainly devoted to establishing the basic
features of neutron tunneling spectroscopy,4 the field
was reviewed in the monograph Single particle
rotations in molecular crystals by W. Press in 1981.5
In this first review neutron scattering functions of
one- and three-dimensional rotors are presented. In
the latter case the influence of site symmetry on the
ground-state multiplicity and the transition matrix
elements is shown. The few examples of rotational
tunneling that were known at the time are described.
The effects of temperature, pressure, isotopic replace-
ment (H-D), and change of environment are dis-
cussed within the single particle model. The evolu-
tion of a typical tunneling spectrum with temperature
is shown in Figure 1. Further development of
neutron scattering6,7 and data analysis8 techniques
allowed a wider range of applications.
The field developed quickly, both experimentally

and theoretically. This progress is documented in

proceedings of a sequence of biennial workshops of
the field, the first one published in 1987,9 the next
ones recently.10,11 These proceedings give a general
overview of the application to more complex materi-
als, new physical phenomena, and the connection of
rotational potentials with the fundamental intermo-
lecular interactions, and presents newly developed
theoretical models.
Besides these proceedings, a number of short

reviews have appeared. They concentrate on various
special aspects or possible applications of rotational
tunneling. One paper shows, for some special ma-
terials, how different experimental techniques (Ra-
man, INS, NMR, IR) reveal different aspects of
tunneling.12 Others show the influence of disor-
der,13,14 the evolution of the bond between the the
hydrogen atoms in the hydrogen molecule when
bound to different metal carbonyl complexes,15 the
application to adsorbed molecules16 or matrix isolated
guest molecules.17 One article focuses on fundamen-
tal physical aspects.18 A recent work summarizes the
actually used theoretical models and relates them to
published literature.19,20 A very comprehensive re-
view on potential calculations for tetrahedrons in
surroundings of any symmetry appeared recently.21
The subject is discussed under the broader aspect of
the quantum character of many motions at low
temperature,22 including chemical dynamics,23 hy-
drogen transfer,24,25 and vibration-rotation tunneling
spectroscopy of molecules and dimers.26 This wide
field is comprehensively reviewed in ref 27. The
tunneling phenomenon in glasses and crystalline
model systems is reviewed in ref 28. Many math-
ematical ideas outlined there are of similar impor-
tance for tunneling molecules.
What is missing so far and what could be helpful

to newcomers in the field and experts is a critical
compilation of results on all investigated materials.
A first attempt in this direction is represented by an
ILL Internal Report from 1987.29 However the
publication is not widely available and it lacks, after
10 years, most of the references. An easily accessible
update version of this Tunnelling Atlas should de-
scribe the state of the art to scientists first entering
the field, explaining the systems investigated so far
and the specific questions asked. It could also offer
a catalogue of materials suited for new research. It
is intended in this work to present the most complete

Figure 1. Temperature evolution of the tunneling spec-
trum of tetramethyllead.248 The two tunneling transitions
at low temperature belong to two crystallographically
inequivalent methyl groups. At high temperature classical
jump reorientation leads to quasielastic scattering.
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bibliography of papers on rotational tunneling stud-
ied by inelastic neutron scattering techniques.

1.2. Rotational Tunneling Studied by Other
Methods
Rotational tunneling is accessible by various spec-

troscopic methods, as it influences a number of
crystal properties. Qualitative and quantitative theo-
ries on the interaction of the various probes with a
tunneling system have been developed.
One of the original techniques to detect tunnel

splittings of librational levels of gaseous molecules
was microwave spectroscopy.30 It was soon realized
that in the solid state, rotational tunneling influences
the proton relaxation in nuclear magnetic resonance
NMR-T1

31-36 and this technique is widely used later
on.37,38 But only in the late 1960s were the features
characteristic of quantum rotation observed and
correctly explained.34,39-41 The further methods actu-
ally used are NMR line-shape analysis,42-45 the
observation of motional narrowing of second mo-
ment,43 NMR resonance techniques,46-48 deuteron-
NMR,49-52 field cycling, zero-field NMR,53 specific
heat,54,55 the observation of vibration-rotation com-
bination lines in optical spectroscopy using the hole-
burning technique,56-61 and infrared spectroscopy.62-64

Among these techniques, spectroscopic and resonance
experiments have the advantage of yielding directly
transition energies. Such methods are complemen-
tary and in certain respects advantageous to neutron
scattering. For example, NMR covers the range of
stronger potentials and has a high sensitivity for low
concentration impurities. For slow tunneling reori-
entation, hole-burning techniques enable the most
direct measurement of spin conversion.65 No method
yields such direct, model independent insight into the
system as INS, however. Since the neutron interacts
weakly with atoms, the results can be calculated in
the first Born approximation and, as mentioned
above, intensities can be interpreted quantitatively.
This allows, for example, structural information to
be extracted as site multiplicities, which are not that
easily accessible by other methods. The extensive
literature on tunneling studies using methods dif-
ferent from inelastic neutron spectroscopy is included
in the references only insofar as the work is related
to materials studied by neutrons and their obvious
fundamental importance.

2. Rotational Tunneling: Basic Properties
The topic presented here contains two subprob-

lems. The first consists of finding the eigenstates of
a quantum rotor in a rotational potential of a certain
symmetry. This problem is a rather old one and
there exist a number of good specialized textbooks
(see, for example, ref 66). The second problem deals
with the interaction of a neutron with such tunneling
molecules. This includes a calculation of the scat-
tered intensities. A calculation of the transition
matrix elements requires a knowledge of the correctly
symmetrized nuclear spin wave functions of the
molecule since the relevant interaction potential
between neutron and molecule, the Fermi pseudo-
potential, is spin dependent.

2.1. Rotational Energy Levels
The quantized rotational energy levels of a mol-

ecule, which has a rotational constant B, are nor-
mally calculated under the assumption that the
environment can be represented by a potential V(ω).
This mean field approach is called the Single Particle
Model. The rotor levels are then given by the
solutions Ei of the stationary Schrödinger equation

with the Hamiltonian

H and the spatial wave function Φi depend on all
angular variables ω. ∇ is the gradient operator. One
recognizes that for a given dimensionality and sym-
metry only the the ratio V(ω)/B determines the
eigenvalues if these are taken in units of the rota-
tional constant also. It is because eq 1 only contains
space variables that the knowledge of the molecular
wave function in space is sufficient to calculate the
rotor levels. The respective mathematics were first
developed for the cases of highly symmetric molecules
in a high symmetry environment. Calculations go
back into the 1950s.67 The qualitative effects of
varying the molecular and site symmetry were es-
tablished and corresponding phenomenological rota-
tional potentials parameterized. However, for some
well-known materials potentials could be derived
from fundamental interactions. The most general
and most comprehensive textbooks are the volumes
Molecular Spectra and Molecular Structure of Herz-
berg.68 A more specialized monograph Molecular
Rotation and Inversion was published by Lister,
MacDonald, and Owen.66 This valuable book pre-
sents, following a clear general discussion of the topic,
the quantum mechanical tools required for doing the
necessary calculations in a very clear way. A selec-
tion of further useful reviews is given by refs 69-71.
Depending on the dimensionality of the problem

the underlying mathematics shows different levels
of complexity. The simplest case is represented by
the one-dimensional 3-fold rotor.5,72 Here the rota-
tional potential can be described by a Fourier expan-
sion into a series of trigonometric functions

This series is usually truncated after the second term,
yielding

In a few cases potentials of higher symmetry are
used.73,74
A treatment of three-dimensional potentials in-

volves the use of the appropriate symmetry-adapted
functions and the tools of group theory to determine
the nonzero expansion coefficients. Accordingly the
literature on potentials of three-dimensional rotors

HΦi ) EiΦi (1)

H ) B∇2 + V(ω) (2)

V(æ) ) ∑
i)1

∞ V3i

2
(1 - cos(3iæ + Ri)) (3)

V(æ) ) {V3

2
(1 - cos 3æ) +

V6

2
(1 - cos(6æ + R))}

(4)
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is much more extensive. More complex models are
more conveniently tested for the mathematically
simpler case of one-dimensional rotors.
Theories going beyond the single particle approach

include various forms of coupling (sections 3.5 and
3.6) and had to extend existing or to develop new
mathematical formalisms.75-78 The theoretical re-
sults are typically not as complete as in the case of
the single particle model.

2.2. Tunneling Transition Matrix Elements for
Neutrons
An essential advantage of neutron spectroscopy

over other methods is the ability to calculate quan-
titatively the intensities of all spectral features. The
weak interaction of the neutron with matter allows
the scattering process to be treated in the first Born
approximation. A neutron with spin i interacts with,
say, a proton labeled γ carrying the spin sγ via the
Fermi pseudopotentialWγ. The molecule may consist
of Γ protons. Then the interaction of the neutron
with the whole molecule is

and

Here I is the total spin of the molecule in its state,
where rγ and sγ are the position and the spin
operators of the γth proton, acoh and ainc are the
coherent and the incoherent neutron scattering cross
sections of the proton. Since the protons of the
molecule are linked by the wave function they scatter
coherently with the spin-dependent part of the cross
section ainc.79
The intensities of transitions between molecular

levels R and R′ are determined by the transition
matrix elements

Since the proton spin does not interact with the space
coordinates the total wave function |ΨR〉 of the
molecule is the product of the spatial, Φ, and spin,
ø, wave functions: |ΨR〉 ) |ΦR〉 |øR〉. |µ〉 is the spin
operator of the neutron. In the case of plane tri-
angles of protons (NH3, CH3) and tetrahedra (NH4

+,
CH4) a rotation corresponds to an even permutation
of protons. Thus, independent of whether we have
fermions (H) or bosons (D) in the molecule, the double
application of the Pauli principle requires the total
wave function to be symmetric. Now subsequent
rotational levels are connected with characteristic
symmetries of the spatial wave functions. To make
the total wave function symmetric, the spin functions
have to show the same symmetry as the spatial wave
functions. This leads to the separation into spin
symmetry species.80,81 All protons of a molecule are
correlated through the spin functions. For δ -local-
ized protons, the space wave functions contribute a
sum of phase factors in the above expression which

are weighted by some constants determined by the
spin wave functions. Detailed calculations of transi-
tion matrix elements can be found in the litera-
ture.5,82-86 The Q-dependent intensities are called
inelastic and elastic incoherent structure factors.
While the tunnel splittings change very significantly
with potential strength, the transition matrix ele-
ments are only weakly affected by the potential. This
was shown, for example, for tetrahedral molecules.87
On the basis of this knowledge, transition matrix
elements are generally calculated for δ -localised
protons.
For the models including coupling tunneling, ma-

trix elements are not or not accurately calculated.
In a time-dependent description the evolution of

the wave-packages characterizes the tunneling pro-
cess.88,89

3. Information To Be Extracted from Tunneling
Spectra Measured with Neutrons
In the following sections, ideas and formulae are

presented for one-dimensional 3-fold rotors for rea-
sons of simplicity. The corresponding more complex
results for three-dimensional tetrahedral rotors can
be found in the cited literature.

3.1. Structural Information
The low temperature scattering function of a single

CH3 group in a 3-fold rotational potential and aver-
aged over all orientations of the methyl group is5

and contains just one elastic and two inelastic lines,
the latter at energy loss and energy gain (pωt. The
spherical Bessel function j0 appears as a result of
orientational averaging. Equation 8 is derived for
δ-localized protons at the corners of an equilateral
triangle of edge length d. The prefactors depend on
the momentum transfer Q and are called the inco-
herent structure factors. They reflect the geometry
of the rotor via the proton-proton distance d. The
generalization to extended wave functions is dis-
cussed below.
Many materials contain crystallographically in-

equivalent rotors. A tunneling spectrum of such a
sample often shows a number of transitions. In the
single particle model, found to be widely applicable,
the respective scattering function is a superposition
of single particle spectra weighted with the occur-
rence probabilities pν of the respective species

Thus the number of tunneling linessif resolvedsis
equal to the number of inequivalent methyl groups
and, since the structure factors are identical, the
intensity ratios of the inelastic lines with respect to
the elastic line are directly determined by their
occurrence probabilities. Finally, these probabilities
are characteristic of the space group of the molecular

W ) ∑
γ)1

Γ

Wγ (5)

Wγ ) acoh + ( 2ainc

xI(I + 1))sγ‚i‚δ(r - rγ) (6)

ARµR ′µ ′ ) 〈µ ′ΨR ′|W|µΨR〉 (7)

S(Q,ω) ) (5/3 + 4/3 j0(Qd))δ(ω) +

(2/3 - 2/3 j0(Qd)){δ(ω + ωt) + δ(ω - ωt)} (8)

S(Q,ω) ) ∑
ν)1

N

pνSν(Q,ω) (9)
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crystal. If more than one methyl group is attached
to a molecule, and in the case of three-dimensional
rotors, where the tunneling sublevel structure is
symmetry dependent, local site symmetries can be
guessed. This latter aspect is similar to the situation
in other spectroscopic methods (e.g., Raman). Single-
crystal studies were performed to assign tunneling
excitations to crystallographically identified methyl
groups.90
A scattering function analogous of eq 8 is derived

for a 3-fold one-dimensional rotor in a 6-fold poten-
tial.84 (In this reference the matrix elements for the
transitions 0 f 1 and 0 f 2 are interchanged.) For
three-dimensional rotors the basic results are shown
in the first monograph on the subject.5 Due to the
larger number of atoms and degrees of freedom, the
tunneling groundstate contains five sublevels which,
at high environmental symmetry, are partially de-
generate. The qualitative changes of the ground
state level scheme with site symmetry are shown in
Figure 2.

3.2. Rotational Potentials

3.2.1. Tunnel Splittings and Rotational Potential

The splitting of the librational ground state is
related to the strength and shape of the rotational
potential. The overlap between pocket states de-
creases almost exponentially with the increase of the
potential strength. A formula for three-dimensional
rotors that is asymptotically correct for strong po-
tentials of strength |V| is given by the expression91

â is close to twice the rotational constant B and R is
close to 1. Again, only the scaled potential appears.
A very similar expression was derived in a WKB
approximation for one-dimensional rotors, but con-
tains an additional prefactor |V|3/4.67 According to
this exponential variation with potential strength,
the tunnel splitting changes much faster with chang-
ing V than any other molecular excitation. This
makes tunneling spectroscopy uniquely sensitive for
weak changes in molecular crystals.
In the case of methyl groups, the leading term in

the rotational potential V is generally found to be the
cos(3æ) term (cf. eq 3). For this reason there exist
systematic dependences between the tunnel splitting
and other characteristic quantities of the potential.

Such relations are derived on the basis of results from
a large number of different materials for the barrier
height V3 or the activation energy.92 Similarly the
classical correlation time and thus the position of the
minimum in a NMR-T1 experiment at a given Lar-
mor frequency changes systematically with the bar-
rier height.93 These correlations can then be used
to estimate the tunnel splitting of an unknown
material from the mentioned quantities.
In pure V6 potentials, the librational ground state

represents a quartet where the separation of the
sublevels approaches a ratio 1:2:1 with increasing
strength of V6.

3.2.2. Structure Factors and Wave Functions
The rotational potential is directly related to the

molecular wave functions via the Schrödinger equa-
tion eq 1. At temperatures where only the ground
state is populated, the proton density is simply

At a higher temperature T, the density distribution
becomes a thermal average over all populated levels
with eigenenergies Ei

From the density distribution observed in a diffrac-
tion experiment, one can derive a mean-squared
librational displacement 〈u2〉lib which, according to eq
11, is determined by the rotational wave function.
For reasons of feasibility the structure factors were
calculated assuming δ-localized protons.82 In a semi-
classical treatment, the effect of the broadened proton
distribution can be taken into account by extending
eq 8 by a Debye-Waller factor94

In the case of methyl groups 〈u2h〉lib ) 1/3〈u2〉lib. The
factor 1/3 appears because the methyl libration has
only one degree of freedom. For large amplitude
librations the inelastic structure factor at large
momentum transfer Q is strongly reduced compared
to the result obtained for δ-localized protons (eq 8).
This effect can be used to directly access the molec-
ular wave function. There are two problems. At
first, the librational part 〈u2〉lib has to be separated
from the translational part 〈u2〉ph of the molecular
motion due to acoustic phonons. Secondly, the rather
large Q values (Q > 1.5 Å-1) needed to determine the
differences to δ-localized protons had been accessible
only by the thermal backscattering instrument IN13
of ILL, which is no longer operational. For this
reason, there exist only very few such experiments.
Structure factors different from those of the fun-

damental tunneling transition as shown in eq 8
determine the Q dependence of transitions to higher
excited rotational states. An exact calculation of
structure factors is possible for free rotors. Their
expansion for small momentum transfer Q leads to

Figure 2. Ground-state tunnel splitting of a tetrahedral
spherical top at sites of various symmetries (from ref 5).

pωt ) â exp(-Rx |V|B ) (10)

F0 ) Φ0Φ*0 (11)

F(T))
∑exp(- Ei

kT)Fi
∑exp(- Ei

kT) (12)

S′(Q,ω) ) exp(- 〈u2h〉libQ
2)S(Q,ω) (13)
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a characteristic increase of the inelastic intensity
with a power Q2(|m-n|+1) for a transition from themth
to the (m + n)-th rotor level.95 These dependencies
are also valid in the case of three-dimensional rotors
in weak potentials of various symmetries.96-99 The
Q dependence can be exploited to identify transitions
to higher excited rotational states.

3.2.3. Isotope Effects

Connected with the different types of protons in
an investigated material, various types of isotope
effects can be distinguished. At first there is the
special methyl group under investigation. Its deu-
teration leads to the internal isotope effect. The
rotational potential relevant to the calculated eigen-
values is the absolute potential scaled by the rota-
tional constant of the rotor (cf. for example eq 10).
Deuteration of a protonated molecule doubles the
relevant scaled rotational potential. For a typical
rotational potential of peak-to-peak amplitude VS )
40 meV, the tunnel splitting of the deuterated species
is reduced by about a factor 20 compared to the
protonated analogue. Compared to this dramatic
change, the librational modes change in harmonic
approximation just by x2.
If the molecule under investigation remains pro-

tonated but only its environment is deuterated, one
speaks of the external isotope effect. The stronger
localization of deuterons may slightly modify the
interactions, such as the multipole moments, or the
atomic positions might change a little. In most cases
this external isotope effect is very weak and of the
order of a few percent.
A way of increasing the rotational potential con-

tinuously consists of applying hydrostatic pressure.
A typical pressure which doubles the rotational
potentials is 12 kbar. This is about the maximal
pressure actually attainable at He temperatures with
standard devices.100 Since deuteration of the rotor
also increases (doubles) the scaled potential, it is in
this respect equivalent to applying a high pressure
to a sample.
Partial deuteration modifies the molecular sym-

metry. Except for almost free rotors, this symmetry
reduction suppresses the tunneling effect completely
in the one-dimensional case. Examples of such
studies are cited in refs 101-108. Early publications
only calculated the levels, but neglected to consider
transition probabilities.109
In the case of three-dimensional rotors, symmetry

reduction with different partial deuteration leads to
a wider variety of isotope effects.110,111 For different
isotopomers in the same environment the sublevel
structure of the librational states is changed char-
acteristically.5,68

3.2.4. Calculating Potentials from Intermolecular
Interactions

The rotational potentials are the result of intramo-
lecular interactions between the atoms of the rotor,
usually protons, and the atoms of its environment.
These interactions are, for example, parametrized as
atom-atom potentials and usually contain a repul-
sive and a van der Waals term. Typical forms are

Born-Meyer or Lennard-Jones potentials. In addi-
tion a Coulomb interaction between charges is taken
into account. In this model two atoms of type κ and
λ with charges eκ and eλ separated by a distance rij
are exposed to a potential

A convincing description of the rotational potential
is obtained when it can be derived from such phe-
nomenological pair interactions parametrized by the
factors Rκλ, âκλ, and γκλ. In the framework of atom-
atom potentials the pair potentials are just summed
up. If the molecule of interest is rotated, the inter-
molecular distances become dependent on its rota-
tional angle ω and the calculated molecular rotational
potential is

where the first sum runs over the protons of the
molecule and the second over all neighboring atoms
within a chosen distance. If the calculated rotational
potential does not agree with the experimentally
determined one, the existing pair potential param-
eters can be refined on the basis of the new informa-
tion, the tunnel splitting. Since the existing param-
eters are already optimized to describe certain
experimental results, this modification has to be
performed under the restriction that the quality of
the description of these other quantities, such as the
crystal structure or the phonon spectra, are main-
tained. To perform these calculations the intermo-
lecular distances, i.e., the low-temperature crystal
structures, have to be accurately known. There are
only a few, but in recent times, an increasing number
of attempts to exploit tunneling spectra in this
way.60,95,112-119 This approach toward an improve-
ment of intermolecular interaction potentials might
be extended beyond single-particle rotation and
include cases of more complex tunneling processes
as rotation-translation-coupling26 (section 3.6).
With the availability of commercial molecular

simulation program packages as, for example, CE-
RIUS2, such calculations, including eventually an
equilibration of the crystal structure, become feasible
for a wider community. A good recent example which
includes structural and spectroscopic data, the latter
ranging from microelectronvoltd to almost 1 eV, is
presented in ref 60.
A more experimental route toward a determination

of the part of the pair potentials most relevant for
the tunnel splitting consists of determining its de-
pendence on changes of external pressure δp. Pres-
sure usually reduces intermolecular distances r. In
the simplest case of an isotropic solid the relative
change δr/r can be described by a isothermal com-
pressibility κ by

Thus, the rotational potential increases with increas-

Vκλ(rij) ) Rκλ exp(âκλrij) -
γκλ

rij
6

+
eκeλ

rij
(14)

V(ω) ) ∑
i)1

Γ

∑
j)1

N

Vκλ(rij(ω)) (15)

δr
r

) - 1
3
κ δp (16)
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ing pressure and the overlap of the wave function and
the related tunnel splitting decreases. Combining
the above equation with the theory of rotational
tunneling yields120

Here n* is the power connected to the r dependence
of that part of the atom-atom potential which mainly
determines the tunnel splitting. This is found to be
the repulsive interaction. Changes in δpωt by up to
a factor of 3 are observed when applying pressures
up to 5 kbars. Examples are presented in refs 100
and 121-125.

3.3. Coupling to Phonons: The Temperature
Dependence
One of the most fascinating aspects of rotational

tunneling is its temperature dependence. By cou-
pling to lattice phonons the low-temperature coherent
quantum rotation (tunneling) transforms into clas-
sical stochastic jump reorientation (hopping). Thus,
with increasing temperature the ground-state tun-
neling transition shifts toward the elastic line and
broadens. At the same time a quasielastic line
emerges from the elastic line which shows the same
intensity as the tunneling peaks. The broadening of
tunneling lines is due to fluctuations of A and E
states with respect to each other at finite tempera-
ture while the new quasielastic line is due to fluctua-
tions of Ea and Eb excited tunneling states which in
average are degenerate. All nonelastic intensity
merges until the spectrum looks quasielastic (clas-
sical). But even there, quantum effects may be
observable.126,127 In the case of methyl groups, the
problem contains one rotational degree of freedom
only and is one of the most clearly defined phenom-
ena of the Bohr correspondence principle.
A quantitative theory applicable to a wide range

of temperatures and strengths of coupling and for a
general phonon spectrum is ambitious. Many dif-
ferent attempts have been made to describe the shift
and broadening of the tunneling levels with increas-
ing temperature. All theories assume that a coupling
to phonons is responsible for the effects. Coherent
mixtures of the lowest librational states were con-
sidered to represent the relevant effect.128,129 The
influence of coupling the rotor to an internal molec-
ular vibration was elaborated.130 The model of a
tunneling rotor experiencing stochastic torques with
increasing temperature was developed.131,132 All
these theories did not produce a quasielastic compo-
nent. The ultimately accepted model is based on a
linear coupling of the rotor to individual phonons133-135

or a Debye spectrum of phonons.134,136 The possibility
of lifting degeneracies of states by coupling is con-
troversely discussed.137,138
Some basic features can be qualitatively under-

stood using a simple model Hamiltonian consisting
of a pure rotational, a pure phonon, and a coupling
or interaction term

with

Here the rotor term is a special form of eq 2. The
phonon spectrum is represented by two harmonic
oscillators (dispersionless Einstein modes) of mass
mi, space coordinate xi, momentum pi and frequency
ωi. The interaction Hamiltonian HInt couples the
translation x1, usually related with the low energy
mode, symmetrically to the rotational angle æ by a
cosine term. The coupling strength is represented
by the parameter gc of dimension millielectronvolts.
It is called the breathing term because it modulates
the strength of the rotational potential. For analo-
gous reasons the second term related to mode 2,
usually the high-energy mode, is called the shaking
term, since it modulates the orientation of the
rotational potential in the crystal lattice. The cou-
pling strength in this case is gs. The two terms cause
shifts of the tunnel splitting in opposite directions.
The breathing term increases the tunnel splitting,
the shaking term reduces it136

Since the activation energies obey ES1 < ES2 the
reduction of the tunnel splitting dominates at high
temperature as observed. Increasing temperature
simultaneously causes a broadening of the tunneling
line

Shift and broadening of the tunneling line are not
related in a simple manner, as is the case for a
damped harmonic oscillator. There are cases with
large shifts and almost no broadening, and vice versa,
as well as intermediate cases. The meaning of
energies ESi and EΓ follows from a more rigorous
treatment discussed next.
The most advanced theory treats the problem using

second-order perturbation theory.139 It includes the
complete phonon spectrum of a molecular solid. This
theory explains the line broadening by resonant
coupling to phonons of energy E01, the first librational
energy of an isolated rotor in a potential, thus
yielding EΓ ) E01 in eq 21, in agreement with many
experiments, while ES2 e E01 (eq 20) due to a coupling
to all phonons with energies below E01. Equations
20 and 21 describe all observations to methyl groups.

δpωt ) Cn* δr
r

(17)

H ) HRot + HPhon + HInt (18)

HRot ) - B
∂
2

∂æ2
+ V3 cos(3æ)

(19)

HPhon ) ∑
i)1

2 ( pi22mi

+
mi

2
ωi

2xi
2)

HInt )x2m1ω1

p
gcx1 cos(3æ) +

x2m2ω2

p
gsx2 sin(3æ)

∆pωt(T) ) pω0[S1 exp(- ES1

kT ) - S2 exp(- ES2

kT )]
(20)

Γt(T) ) Γ0 exp(- EΓ

kT) (21)
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Mostly the shift toward larger tunnel splittings (first
term of eq 20) is not observed and the tunnel splitting
decreases continuously with temperature while the
transition broadens by Γt.
Equation 21 offers the possibility of relating the

librational energy E01 ≈ EΓ of a given rotor to its
tunnel frequency in the case of systems containing
inequivalent rotors. Only such an unambiguous
assignment of two rotational excitations of the same
rotor allows the derivation of the shape of a rotational
potential by determining a next higher Fourier
components. Another possibility is based on studies
of the Q-vector dependence of tunneling and libra-
tional modes in a single crystal.90 This method also
allows the excitation to be attributed to a crystallo-
graphically identified rotor.
The aforementioned theories yield reliable results

only for weak coupling and temperatures, where the
shift and broadening of the tunneling line is small
compared to the tunnel splitting itself. Advanced
path integral methods were developed which do not
have this shortcoming.140 An appropriately modeled
harmonic oscillator system was invented141,142 that
does not contain all the details of a real system, but
allows an analytical treatment of the problem with
answers valid for any strength of coupling the rotor
to phonons. The results confirm the equations de-
rived by second-order perturbation theory.139 Refined
models were developed that explain such details as
the different broadening of the inelastic and quasielas-
tic lines.143-145 Numerical solutions of the time
dependent Schrödinger equation146-148 confirm the
analytical results. The same problem, coupling a
quantum degree of freedom to a classical one, is also
treated for a general two level system.149
Recently, using the mathematical formalism de-

veloped for describing translational tunneling, a new
description of damping a tunneling rotor via libra-
tional transitions was obtained.150,151
Finally, a gauge potential theory different from

concepts of classical solid-state physics was pro-
posed.152-155 The gauge potential contains a priori
the reduced symmetry of the combined rotor-phonon
system, which in the perturbational access to the
problem is introduced a posteriori. By requiring a
quantum theory consistent with relativity,156,157 this
theory comes to the conclusion that such fundamen-
tal concepts as the rotational quantization are no
longer valid and the Pauli principle loses its straight-
forward interpretation.156-162 The early states of this
theory are reviewed in ref 18.

3.4. Coupling to Phonons: Spin Conversion

The spectroscopy of tunneling systems also gives
direct access to the phenomenon of spin conversion.
The time evolution of a quenched tunneling rotor
system into thermal equilibrium is slowed down since
the transition from an excited to the ground tunnel
state involves a spin flip. In systems with magnetic
or paramagnetic constituents this process is fast, but
it is very slow (days) in other molecular crystals. In
such systems this evolution can be studied in real
time by INS. Global results can be obtained using a
neutron transmission method which exploits the fact

that, for sufficiently long neutron wavelengths where
the molecule is “seen” as an entity, the total cross
section of a molecule depends on the total spin I in
the respective state.163 The spin is maximum in the
ground state. Thus, transmission of the sample
decreases after a jump to low temperature with
approaching thermal equilibrium. The most com-
prehensive data in this field were obtained by this
technique.164,165 However, in systems with complex
tunnel spectra (three-dimensional rotors, inequiva-
lent molecules) detailed results can only be obtained
if the population of every individual level is obtained
from the spectroscopic observation of the intensities
of transitions starting from this level. See for
example ref 110.
After the transition into the ground state the

protons within one molecule scatter coherently. This
leads to new elastic intensity which can be observed
in a neutron diffraction experiment. Its broad an-
gular distribution is determined by the form factor
of the molecule, which is identical to the elastic
incoherent structure factor (EISF) of the molecule in
a quasielastic scattering experiment. By this route
the evolution of the elastic “background” with time
offers a way of studying spin conversion.166
For methyl rotors, theories were developed explain-

ing the spin conversion of the protonated species on
the basis of intramolecular dipole-dipole interac-
tion167,168 and of deuterated molecules on the basis
of the intramolecular quadrupole-quadrupole inter-
action50,51,169-171 and involving spin diffusion.40,172,173
With decreasing temperature the spin conversion
rate follows different T dependences due to different
processes involved in the conversion process. At zero
temperature the direct emission of a phonon of
energy pωt yields a constant conversion rate. It
increases at low temperatures linearly with T. There-
after two-phonon scattering (Raman process) leads
to an increase of the conversion rate proportional to
T7. At the highest temperature (T g 10 K), the one-
phonon scattering and simultaneous excitation of the
rotor into its excited torsional state (libron-phonon
process) yields an Arrhenius dependence of the
conversion rate.168 Coupling via a shaking term
cannot lead to complete conversion.167 Experiments
have revealed regimes with the proposed different T
dependences.59,85,174,175
For methane a similar theory was established back

in the 1970s.176,177
To produce thermal nonequilibrium at the begin-

ning of the experiment, temperatures significantly
lower than the tunnel splitting under study must be
achieved. This limits the number of materials ac-
cessible to INS techniques. NMR methods allow a
dynamic inversion of the population of tunnel levels
and thus a study of conversion at any temperature
and for small tunnel splittings.178
In addition to neutron scattering, optical hole-

burning spectroscopy represents, in certain cases,59,179
a very sensitive method to study spin conversion.

3.5. Directly Coupled Molecules

Direct coupling of rotors leadssin a few casessto
new features not described by the single particle
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model. For example, methane is contained in a rare
gas matrix as a statistically distributed substitutional
defect. Effects of coupling appear with increasing
concentration, when the presence of dimers180-185 and
larger clusters exceeds that of isolated molecules.186
In other cases the crystal may contain dimers187 or
higher multimers as structural units. The problem
of two and three coupled tunnel rotors was treated
long before neutron scattering investigations entered
the field.188-190 In the case of one-dimensional 3-fold
rotors, the general phenomena are derived using a
model Hamiltonian consisting of two single-particle
Hamiltonians analogous of eq 8 and a coupling
potential W of strength W3 which depends only on
the relative orientation of the two tops

As a result of coupling, the tunneling sublevels of
a librational state get labeled with two quantum
numbers and contain twice the number of sublevels
as the uncoupled system. This new complexity leads
to three tunnel bands instead of one. Depending on
the sign ofW3 the coupling can apparently reduce or
enhance the single particle potential. The validity
of various theoretical approaches is studied.191,192
Again, the respective transition matrix elements of
the neutron scattering function can be calculated193
which enables quantitative understanding of the
spectra.
According to the outlined procedure, the theory of

coupled methyl groups has been extended to three
units194 and larger clusters.195 Only recently has a
sufficiently efficient and exact algorithm been devel-
oped which has allowed the number of coupled rotors
to be extended to 10 units.76,196 The deviation of
results of molecular field approximation from exact
solutions197 is studied and an analytically solvable
harmonic oscillator model is developed.198 These
calculations show that the effects of coupling which
appeared for dimers are continuously diminishing
with increasing the number of coupled rotors. Al-
ready for four coupled methyl groups, the calculated
tunnel spectrum looks almost like a single particle
spectrum. The tunnel splitting, however, is rescaled
to smaller values due to the intermolecular interac-
tion. Thus one might be misled when extracting
potential parameters according to the Single Particle
Model from data ressembling single particle spectra.
The temperature dependence of the rotational

tunneling spectrum of coupled pairs is discussed in
ref 199. The main effect here due to coupling is that
the first excited librational level is split into a
doublet. Both energies enter into the equations
which determine the shift and broadening.
A generalization to the case of coupled inequivalent

rotors would follow the formalisms applied in molec-
ular spectroscopy, e.g., see ref 200.
For the special symmetry of four methyl groups

attached to a central metal(IV) ion, in the case of
tetramethyltin, the topology of coupled tunneling
rotation differs from that of a linear chain. All rotors
are equivalent and interact with each other.201,202

There exists a different approach to the problem
of many coupled tunneling rotors. In analogy to
phononssthe excitations of atoms coupled by springs
in a crystalsa rotationally coupled infinite chain of
rotors will develop quantized rotational excitations.
A possible Hamiltonian of such a linear chain of
quantum rotors is75

Here V3 is a local single-particle potential identical
for all rotors and VC is the interaction potential
between neighboring rotors which, again, depends on
the relative orientation of the neighbors. This quan-
tum-mechanical Hamiltonian with an infinite num-
ber of degrees of freedom and anharmonic potentials
cannot be diagonalized either analytically or numeri-
cally. Thus the interaction potential is expanded
harmonically for small angular differences æj+1 - æj.
This step violates the symmetry of the problem.
However, after this linearization the Hamiltonian is
equivalent to that of the sine-Gordon potential, a
problem which has been intensively studied. The
excitations of the quantum sine-Gordon equation are
in-phase and out-of-phase tunneling transitions and
quantized traveling states of the breather mode. The
rotational excitations of various compounds have
been interpreted with this model203-205 and found to
be consistent with theoretical expectations. Unfor-
tunately structure factors are not yet derived for the
different transitions. Further evolution of the theory
was able to describe spectra of partially deuterated
samples as excitations of a breather in a box.75
Despite these results we are left with the problem
that the results of the sine-Gordon model contradict
the solution of the nonlinearized problem for four and
more coupled groups.76,196,198
By taking into account a dynamical coupling be-

tween just two rotors in the form of the mixed
derivative term in the following Hamiltonian

some of the spectra described by the sine-Gordon
model have found another possible interpretation.206

3.6. Coupling to Their Own Center of Mass
Rotation: Tumbling Tunnel Rotors

A strange observation in the diffraction patterrns
of Ni(ND3)6I2207 has initiated the development of a
model of coupled rotation which might assume gen-
eral importance. Very surprisingly the deuteron
density of the ND3 is represented by a square,
characteristic of the environmental symmetry of the
ammonia in this material. This was finally inter-
preted as a correlated reverse rotation of the off-

H(æ1,æ2) ) -B ∂
2

∂æ1
2

+ V3 cos(3æ1) - B ∂
2

∂æ2
2

+
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H ) ∑
j (-Bj

∂
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2
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centered whole molecule, rotation angle R, and the
ammonia, rotation angle æ, measured with respect
to the vector RB connecting the center of symmetry
with the molecular center of mass (com), such, that
the ammonia rotates by ∆æ ) 2π when the center of
mass has moved by ∆R ) -3/4(2π) only. Thus at any
time

holds. This motion can be visualized as an evolution
of the ammonia triangle on the square of the sur-
rounding potential surface in such a way that sub-
sequent corners of the triangle (rotor) and the square
(environment) successively coincide. If the com mo-
tion is restricted to a circle the respective potential
surface is

It contains the 3-fold symmetry of the rotor and the
4-fold symmetry of the environment. A1 represents
the potential strength for a pure ammonia rotation
at any fixed off-center position R. Both, A1 and A2,
determine the barrier height of the com rotation. The
Hamiltonian of this coupled rotation is

The eccentricity R ) |RB| of the center of mass rotation
is related to the potential parameters and the geom-
etry of ammonia (F ) d((x7)/4), d ) proton-proton
distance) by

Depending on the values of the potential parameters
this model covers the situation of the centered free
single particle rotor (A1 , 1 and A2/A1 , 1) up to the
case of a localized off-center hindered rotor (finite A1
and A2/A1 < 1) with the interesting intermediate
regime of rotation-translation-coupling. Here the
complex two-dimensional potential surface involves
a tunneling ground state with an increased number
of sublevels compared to the single particle model
with a 3-fold potential. Thus this model offers a
possibility to explain complex tunneling patterns.77,78
In determining transition matrix elements, spin wave
functions have to be included in addition to the
product free rotor basis wave functions. These
complex calculations have recently been done (P.
Schiebel, et al. Phys. Rev. B, submitted). Thus
intensities can be used to distinguish between dif-
ferent models.
The first spectroscopic proof of the combined coher-

ent counterclockwise tunneling rotation of a one-
dimensional 3-fold rotor and its center of mass is
given for NH3 adsorbed on a MgO[100] surface.95 A
second example, a Hofmann clathrate, is shown in
ref 209, together with a simple mathematical recipe

for determining the eigenvalues of eq 27 based on
product free rotor wave functions. The method also
yields the eigenfunctions which can be derived from
a quantum mechanically correctly averaged temper-
ature dependent proton density. Calculated proton
density distributions agree well with the fourfold
pattern observed experimentally.210

The model might be adapted to other environmen-
tal symmetries also. In the case of lithium acetate
and γ-picoline, it offers a convincing alternative
interpretation (P. Schiebel et al., to be published).

3.7. Influence of External Fields

A series of papers has considered the influence
of static magnetic fields on the tunneling level
schemes.72,211-213 These papers represent the theo-
retical basis of level crossing NMR. The idea of a
molecular motor is based on interaction with a
rotating magnetic field.162

3.8. Systematic Studies and New Materials

Systematic studies of series of compounds differing
only in a few well-defined properties have been found
to be very useful. Such investigations were per-
formed for acetates, methylbenzenes, the halomesi-
tylenes, hexaammines and metal hexaammines, al-
kanes,214,215 ketones,216,217 tetramethyl metal com-
pounds, organometallic methyl-tin materials,218 am-
monium hexahalometalates, ammonium in alkali
halides, methane in rare gas matrices and hydrogen-
substituted metal carbonyls.15,219 The relevant refer-
ences are found in the corresponding tables (see
section 5).
Well-defined characteristic changes of the environ-

ment can also be obtained by structural phase
transitions. If they happen at low temperatures (T
e 20 K)220,221 they modify the rotational tunneling
spectrum. A famous model example is methane.222
Such materials offer a unique possibility of testing
interaction potentials: the spectrum of the new phase
must follow purely from the structural changes.
It was shown in the case of some technically

interesting materials, such as inclusion compounds
and catalytically useful surfaces, that tunneling
molecules can be used as probes to study the local
potentials of adsorption sites.223 Thus rotational
tunneling seems to have developed from an exotic
phenomenon to a useful spectroscopic method.

3.9. Some Special Remarks on Three-Dimensional
Rotors

The extraction of rotational potentials from the
eigenvalues (transition energies) is much more dif-
ficult in the case of three-dimensional rotors (NH4

+

and methanes) because the potential has to be
expanded into three-dimensional symmetry adapted
functions (usually cubic rotator functions or Wigner
D functions). Different site symmetries require dif-
ferent expansions of the rotational potential. The
high symmetry problem of a tetrahedron in a tetra-
hedral field was solved decades ago.224-226 The theory
of neutron scattering from tunneling three-dimen-
sional rotors was developed for this case.82,227,228 The

R ) -3/4æ (25)
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accuracy of numerical results was improved using
more sophisticated wave functions.91,120 The formal-
ism was adapted to lower symmetries5,229-231 and
molecules of different shape.232 The correlation
between rotational potentials and pair interaction
potentials was developed independently for methane
in various surroundings233-235 and ammonium com-
pounds, e.g., see refs 113 and 236-239. D. Smith
has derived expressions for the rotational potentials
at many symmetries in terms of Wigner D functions
and has calculated the potential parameters from
atom-atom potentials for various materials.21,240
Because of the much larger parameter space, the
problem of describing the wave functions correctly
and the much more complex mathematics required,
no general expressions or tables of transition energies
as a function of potential parameters can be pre-
sented, as in the case of one-dimensional rotors. For
more detailed information the reader is referred to
ref 21.

4. Translational Tunneling
Translational tunneling describes the quantum

mechanical transition of a particle, in our case
protons, from one well of a (possibly asymmetric)
double minimum potential to the other. Despite the
basic physical process is common to both, rotational
and translational tunneling, there are some impor-
tant differences. First, the crystallographic situation
is not the same after a transition from one potential
minimum to the other and the environment might
relax toward a new equilibrium. Thus the calculation
of tunneling rates is based on somewhat different
techniques.27,28,241 Secondly there are no symmetry
restrictions to the wave function due to the Pauli
principle for a single atom, which would lead to
selection rules for transitions. Both differences make
translational tunneling very sensitive to phonon
interaction. The low-temperature properties of glasses
and various crystalline model systems as for example
KCl doped with Li can only be explained by tunneling
states. Recent developments and progress in this
field is reviewed in ref 28, including a table of the
tunneling energies (10 to 100 µeV). Another famous
specific example of this type of quantum motion are
protons in the hydrogen bond.242 Protons trapped
near impurities at sites of 2-fold symmetry in hydro-
gen-metal systems represent another type of inter-
esting material.243-246 Usually the presence of the
particle creates the asymmetry in a double minimum
potential (self-trapping).247 For the simple model of
a symmetric potential an analytical solution of the
problem is outlined in ref 66. Since the physics of
translational tunneling is closely related to rotational
tunneling, some impressing examples are included
in this review.

5. Technical Information
The materials studied are presented in 17 tables

showing in the first two columns the name and the
chemical formula and in the last one the related
references. Unpublished results show in this column
the source of information (name of the involved
researcher).

5.1. One-Dimensional 3-fold Rotors

The rotational potential is usually represented by
the first two terms of a Fourier expansion into
trigonometric functions of the angle æ (eq 3). The
parameters are quantified on the basis of the expres-
sion eq 4. Except for two experimental examples,
toluene and nitromethane, which fit a general value
for R to the data, and in cases where V(æ) is
determined by calculations from atom-atom poten-
tials and Fourier analyzed according to eq 3, the
phase angles R ) 0 or R ) π are used. The first case
(R ) 0 ) describes potentials with broad barriers and
shallow minima while the second one (R ) π) gives
potentials with broad minima and narrow barriers.
Even in these two cases the two coefficients of the
potential can only be derived if a second character-
istic energy is also observed. This is usually either
the energy difference to the first excited librational
state or the activation energy for rotational jumps.
Using two energies one can obtain the potential
parameters V3 and V6 for fixed R. Often three other
parameters are used to define the potential: VS )
|V3| + |V6|, δ ) |V3|/VS, and k ) 0(1) for R ) 0(π).
The eigenvalues of a one-dimensional, 3-fold rotor
were calculated for a wide range of potential param-
eters by R. F. Gloden248 using a method of expansion
in continued fractions. Nowadays it is straightfor-
ward to do the diagonalization of the Hamiltonian
matrix directly using a standard computer program.
Despite this possibility it is useful to have tabulated
eigenvalues. The parts of a-f of Figure 3 show the
calculated eigenvalues for general potentials of shape
(3) in an energy range resolvable by INS. They allow
the reader to interpret his data within the single
particle model. The parametrization uses the inde-
pendent variables V3, VS, and k. While the ground-
state tunnel splitting pωt as the distance between the
two lowest eigenstates is clearly defined, the libra-
tional energies E0n are the distances between the
averaged energies of the lowest two and a following
pairs of levels. For example

and so on. This is a useful approximation for large
barriers where the doublet structure of librational
levels is not resolved in the scattering experiment.
For very low barriers or potentials with dominating
6-fold term, which are rare, this simplification is
misleading, however. In such cases all eigenvalues
indeed must be calculated. The activation energy Ea

is taken here as the distance to the barrier top from
the ground state.
The 10 tables on one-dimensional rotors treat

monosubstituted methanes (Table 1), alkanes, halo-
genated alkanes, alkenes and alkines (Table 2),
ketones (Table 3), ethers and thioethers (Table 4),
acids (Table 5), salts of acids, mainly acetates (Table
6), benzene derivatives (Table 7), heteroaromates
(Table 8), organometallic compounds (Table 9), and
ammonia compounds with a strong weight on hexa-
ammine halides (Table 10).

E01 )
E3 + E2

2
-
E1 + E0

2
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If values of V3 and V6 are given in Tables 1-10,
then the ground-state tunnel splitting pωt and the
first excited libration E01 have been used to derive
the rotational potential. If V6 is not given, a pure
cos(3æ) potential is assumed and derived from the
ground-state tunnel splitting alone. In cases where
no potential was derived it is easy to estimate the
strength of a purely 3-fold cosine potential from
Figure 3 or, for very small tunnel splittings not

contained in this figure, from an expression analo-
gous to eq 10 for the asymptotic behavior. If more
than one set of potential parameters was able to
describe the data we have only given those closer to
cos(3æ) because experience has shown that the
potentials are usually dominated by the cos(3æ) term.
For pure 3-fold potentials a systematic relation is
expected between the size of a tunnel splitting and
the temperature Tmin where the inverse spin lattice
relaxation time T1

-1 in an NMR-T1 curve shows its
classical minimum. The data have to be transformed
to identical experimental conditions, that is, equal
Larmor frequency. This correlation was indeed
found.93 We thus show in the column 8 the value Tmin
with the experimental Larmor frequency in brackets.
Finally, we note the technique used to measure the
tunnel splitting. The abbreviations have the follow-
ing meanings: (I)NS, (Inelastic) neutron scattering;
NMR-T1, nuclear magnetic resonance; spin lattice
relaxation; FC, field cycling NMR; LC, level crossing
NMR; lf, low field NMR; D-NMR, Deuteron NMR; LS,
NMR line-shape analysis; HC, heat capacity; OS,
optical spectroscopy; IR, infrared spectroscopy; MW,
microwave spectroscopy; VR, viscoelastic relaxation;
AR, anelastic relaxation; ENDOR, electron nuclear
double resonance; TH, theoretical paper, and list the
references of the relevant publications. These refer-
ences should lead the interested reader to literature
section.
In the few cases where coupling between methyl

groups has an effect on the tunnel spectrum, the
interpretation of spectra is done on the basis of the
combined single particle and interaction potential
contained in eq 22. In such cases we showW3 instead
of V6 in column 6.

5.2. Three-Dimensional Tetrahedral Rotors
The tables on three-dimensional rotors list the

studied material according to the following order:
ammonium hexahalo metallates (Table 11), pure and
mixed ammonium halides and others (Table 12),
methane in its various phases (Table 13), methane
in rare gas and other matrices (Table 14), methane
on surfaces, silane, and germane (Table 15). Tun-
neling of molecular hydrogen is included only in as
far as hydrogen exists in special environments (Table
16).
Because of the higher multiplicity of the ground

state, the tunneling spectra from tetrahedral mol-
ecules show at least two transitions per molecule.
This is in the case when molecular and site symmetry
are identical and tetrahedral. This number can
increase to up to nine if the site symmetry of the
molecule, given in column 3 if available, is succes-
sively reduced (Figure 2 and ref 5). If, in addition,
inequivalent rotors are present in the sample the
situation quickly becomes rather complex. Thus we
do not show all observed tunneling lines but give
mostly only the value of the highest tunnel frequency
and the number of lines (in brackets). The other
information is presented the same way as for one-
dimensional rotors. The potentials reproduced in
column 6 only explain the observed ground state
tunnel splitting. For the simplest case, a tetrahedron
in a tetrahedral field, the reduction of the tunnel

Figure 3. Transition energies obtained from the eigen-
values of the CH3 rotor in a potential of general shape of
eq 4. V3 and V6 are taken g0. VS ) V3 + V6 is a measure
of the potential strength, δ ) V3/VS determines the shape
of the potential: (a) k ) 0 (R ) 0°); ground state tunnel
splitting; (b) k ) 0; distance between the two lowest
tunneling doublets. E01 ) (E2 + E3 - E0 - E1 )/2. Ei are
eigenenergies of the methyl rotor; (c) k ) 0; the activation
energy is taken as the barrier height measured from the
librational ground state; (d) as a but k ) 1 (R )180°); (e)
as b but k ) 1; (f) as c but k ) 1.
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splittings with increasing potential strength is shown
in Figure 4.
To avoid the problem of complex mathematics,

estimates on the basis of one-dimensional models are

helpful. This analogy is justified by the fundamental
property of a wave function to decay exponentially
into a potential wall. Thus the tunnel splittings
decrease almost exponentially with increasing po-
tential strength in any dimension. The recipe is the
following: Determine the average tunnel splitting of
the 3d system, scale it down by a factor 2, which is
the ratio of the respective fundamental free rotor
transition energies 1B/2B and eventually rescale to
the same rotational constant B. With this value refer
to Figure 3, δ ) 1. The peak-to-peak height VS gives
a rather good estimate of the strength of the 3d
potential.

5.3. Others

A final table (Table 17) is devoted to topics related
to the scientific neighborhood of rotational tunneling.
It contains some arbitrarily selected theoretical
calculations of simple molecular complexes, and
translational tunneling in metal hydrates and hy-
drogen bonded systems. The references in this table
offer only a few examples of work thematically
related to rotational tunneling.

Table 1. CH3 Rotors, Monosubstituted Methanes

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

methyl fluoride CH3F P21/c 23.1 1 26.6 0 INS 250
methyl fluoride CH3F/Ar 340 ,1 INS Prager
in Ar (148) TH 251

methyl chloride CH3Cl 0.1 INS 252
methyl bromide CH3Br Pnma 0.9 1 50.7 0.6 0 INS 252

50.3 0.5 0 48 (30) NMR 253
methyl iodide CH3I Pnma 2.44 1 41.0 1.9 0 INS 252

254
41.8 1.5 0 253

INS 124
CD3I >0.01 D-NMR 49

nitromethane CH3NO2 P212121 35.1 1 25.2 15.4 R ) 30° INS 255
INS 101
INS 94

256
257
112

INS 258
104
117

NS 164
CD3NO2 P212121 1.7 1 INS 101
CHD2NO2,
CH2DNO2

103

methyl iodide CH3I/C 40.0 23.6 INS 16
on grafoil 20.0

methanol in CD3OH >2 MHz <50 NMR 259
hydroquinone ∼0.04 40 51

Table 2. CH3 Rotors, Aliphates: Alkanes and Halogenated Alkanes, Alkenes, and Alkynes

compound
name

compound
formula

crystal
structure

νt
(kHz)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

iodoethane CH3CD2I 18.3 NMR 260
NMR 261

hexane CH3(CH2)4CH3 298 LF 214
215

NMR 262
heptane CH3(CH2)5CH3 298/146 LF 214

215
OS 263

Figure 4. Ground-state tunnel splitting of a tetrahedral
spherical top (methane) in a purely tetrahedral potentials
V(ω ) ) A3H11

(3)(ω ). (ω ) Eulerian angles; H11
(3)(ω ) ) cubic

rotator function.) (From ref 119.)
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Table 3. CH3 Rotors, Aliphates: Ketones

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

acetone CH3COCH3 0.4 MW 188
FC, LC 270

2,3-butanedione CH3COCOCH3 monoclinic 74 kHz ∼1 159 131 (24) LF-NMR 271
(ddiacetyl) P21/n 129 30 1 128 (21) LF-NMR 272

2-butanone CH3(CH2)COCH3 0.81/495 kHz 1/2, 1/2 50/114 LF 273
274

2-pentanone CH3(CH2)2COCH3 6.3/1.76/1.31 INS 275
3-pentanone CH3(CH2)CO(CH2)CH3 0.015 NMR 216

276
2-hexanone CH3(CH2)3COCH3 5.8/5.0/2.3/ 29/145 LF 216

1.5/152 kHz ../1/2 276
LF 277

3-hexanone CH3(CH2)CO(CH2)2CH3 210 kHz 1/2 142 142 (21) NMR 216
NMR 276
LF 278

2-heptanone CH3(CH2)4COCH3 63 kHz 1/2 31/149 LF 216
276

LF 277
3-heptanone CH3(CH2)CO(CH2)3CH3 272 kHz 115 LF 216

276
4-heptanone CH3(CH2)2CO(CH2)2CH3 491 kHz 1 129 132 (21) LF 216

276
495 kHz 1 NMR 278

2-octanone CH3(CH2)5COCH3 110 kHz 1/2 30/151 LF 216
276

LF 277
3-octanone CH3(CH2)CO(CH2)4CH3 338 kHz 112 LF 216

276
2-nonanone CH3(CH2)6COCH3 90 kHz 1/2 28/143 LF 216

276
LF 277

3-nonanone CH3(CH2)CO(CH2)5CH3 200 kHz LF 216
276

5-nonanone CH3(CH2)3CO(CH2)3CH3 386 kHz/
150 kHz/
36 kHz

LF 214

Table 2 (Continued)

compound
name

compound
formula

crystal
structure

νt
(kHz)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

octane CH3(CH2)6CH3 300 LF 214
215

nonane CH3(CH2)7CH3 299/134 LF 214
215

decane CH3(CH2)8CH3 301 LF 214
215

undecane CH3(CH2)9CH3 342/44 LF 214
215

dodecane CH3(CH2)10CH3 301 LF 214
215

tridecane CH3(CH2)11CH3 343 LF 214
215

tetradecane CH3(CH2)12CH3 303 LF 214
215

pentadecane CH3(CH2)13CH3 344 LF 214
215

hexadecane CH3(CH2)14CH3 299 LF 214
215

heptadecane CH3(CH2)15CH3 338 LF 214
215

octadecane CH3(CH2)16CH3 301 LF 214
215

2-chloropropane CH3(CHCl)CH3 290/50 LF 214
215

dimethylacetylene CH3CtCCH3 1.74 µeV 1 27.9 2.26 1 INS 3
264

2,4-hexadiyne CH3CtCCtCCH3 1.06 µeV 1 INS 265
INS 266

2-methyl-2-butene CH3CHdC(CH3)2 0.89 µeV 1/3 52.6 49/77 (21) INS 267
FC

polymethylmethacrylate 1 VR 268
(PMMA) 269
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Table 4. CH3 Rotors, Aliphates: Ethers and Thioethers

compound
name

compound
formula

crystal
structure

νt
(kHz)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

dimethyl
ether radical

CH3OCH3 282

(44-391) Coupled Pairs TH 283
dimethyl sulfide CH3SCH3 752/95 LF 181

LF 284
(93-749) Coupled Pairs TH 283

LF 285
286
287
262

methyl phenyl sulfide
(thioanisole)

C6H5SCH3 557 1 127.2 114 (21) LF-NMR 274

octyl ether CH3(CH2)7O(CH2)7CH3 260/107 LF Clough
octyl sulfide CH3(CH2)7S(CH2)7CH3 222/149 LF Clough
dimethyl ether CH3OCH3 390/45 LF 214

181
dipropyl ether CH3(CH2)2O(CH2)2CH3 330/110 LF 181
dipropyl sulfide CH3(CH2)2S(CH2)2CH3 140/85/60 LF Clough

Table 5. CH3 Rotors, Aliphates: Acids

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

acetic acid CH3COOH 3.3 40 46 (30) NMR 288
1.52 INS Johnson

propionic acid CH3CH2COOH 216 kHz LF Clough
260

coupling LC-NMR 287
4-tolyacetic acid CH3C6H4CH2COOH 1.17 NS Clough
acetylsalicylic C8O4H5CH3 1.22 55.8a 10.3a INS 60
acid (aspirin) C8O4H5CD3 2700 kHz 44 57.6 (72) D-NMR 289

D-NMR 290
methyl
malonic acid

HOOCCH(CH3)COOH 75 kHz LF 291

292
293
260
262

dimethyl
malonic acid

HOOCC(CH3)2COOH 337 kHz 1 206 135 (21) LF 278

tiglic acid CH3CHdC(CH3)COOH 10.8 1/2 44.5 23 (21) INS,LC-NMR 267
0.47 1/2 88.9 52 (21)

3-toluic acid CH3C6H4COOH 15.0 NS Clough
4-toluic acid CH3C6H4COOH 13.0 NS Clough

a General phase factors used.

Table 3 (Continued)

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

2-decanone CH3(CH2)7COCH3 293 kHz 1/2 LF 277
2-undecanone CH3(CH2)8COCH3 353 kHz 1/2 LF 277
2-dodecanone CH3(CH2)9COCH3 343 kHz 1/2 LF 277
2-tridecanone CH3(CH2)10COCH3 361 kHz 1/2 LF 277
acetylacetone CH3COCH2COCH3 42/4.0 1/2, 1/2 19.6/38.1 11/42 (21) INS, NMR 276

INS 279
coupling NMR 213

NMR 262
CH3COCD2COCH3 34.4/3.4 1/2, 1/2 20.85/39.3 13/51 (21) INS, NMR 279

acetonylacetone CH3CO(CH2)2COCH3 97 MHz 1 62 54 (21) NMR 18
NMR 271

2-hexadecanone CH3(CH2)13COCH3 343 kHz 1/2 LF 277
2-nonadecanone CH3(CH2)16COCH3 350 kHz 1/2 LF 277
methyl ethyl
ketone

CH3COC2H5 469 kHz LF 280

trans-4-phenyl-
3-buten-2-one

C6H5(CH)2COCH3 0.74 1 54.5 51 (21) NMR 281

acetophenone C6H5COCH3 P21/n 0.00598 1 113.7 97 (25) NMR 281
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Table 6. CH3 Rotors, Aliphates: Salts of Acids and Other Derivatives

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

lithium acetate (CH3COO)2Li‚2H2O 250 1 coupled dimers NMR 294
dihydrate INS 295

INS 187
INS 296
INS 297
INS 298
INS 106
NMR 173
INS 100
TH 283
INS 164

(CH3COO)2Li in 166 1 INS 205
(CH2DCOO)2Li‚2H2O

manganese acetate (CH3COO)2Mn‚4H2O P21/c 137.0 1/3 7.4 4.5 (24.5) INS 299
tetrahydrate 50.0 1/3 11.6 164

1.2 1/3 31.7
lead acetate trihydrate (CH3COO)2Pb‚3H2O 45.0 50 7.9 1 10 (21.7) INS 300
ammonium acetate CH3COONH4 16.2 17.1 19 (21.7) INS 300

INS 295
INS 301
NS 164

24.2 2.0 1 20 (30) NMR-T1 Kuhnen
80 kHz NMR 286

potassium acetate CH3COOK 0.23 64 2.1 1 NMR 92
sodium acetate CH3COONa‚3H2O 5.7 <1 22.6 28 (21) INS 300
trihydrate INS 121

INS 301
5.6 38 5.2 0 46 (30) NMR 92

173
NS 164

33 1.3 1 29 (30) NMR-T1 Vermathen
sodium acetate CH3COONa 1.5 at T )

46 K
37 (30) NMR Montjoie

CD3COONa >0.01 D-NMR 49
zinc acetate (CH3COO)2Zn‚2D2O 5.33 <1 23.0 10% V3 28 (21) INS 300
dihydrate (CH3COO)2Zn‚2H2O 4.95 <1 23.2 28 (21) INS 301

NS 164
38.7 2.0 0 30 (30) NMR-T1 Vermathen

magnesium acetate (CH3COO)2Mg‚4H2O 1.80 10% V3 50 (21) INS 300
tetrahydrate 43.9 1.3 1 50 (30) NMR-T1 Vermathen

nickel acetate (CH3COO)2Ni‚4H2O 1.40 10% V3 INS 300
tetrahydrate NS 164

copper acetate (CH3COO)2Cu‚H2O 0.3 13% V3 60 300
monohydrate 302

303
cadmium acetate (CH3COO)Cd 41.0 FC 304

NS 164
(CD3COO)Co 610 kHz D-NMR 49

zinc acetyl acetate Zn3COOZnCH3CO 0.51 FC Clough
methyl acetate CH3COOCH3 P21/n 1.33 1/2 48.4 45 (21) NS 305

84 kHz 1/2 156.6 120 (21) LF
scandium acetate Sc(CH3COO)3 7/9 1/3, 1/3 38.8 7.3 0 INS 306

Sc(CD3COO)3 g0.01 D-NMR 306
mercuric acetate CH3COOHg 7 kHz FC Clough
cobalt acetate (CH3COO)2Co‚2H2O 30.0/4.9/1.1 NS Heidemann
dihydrate NS 164

lithium lactate CH3CH(OH)COOLi 90.0 NMR 291
(free radical) NS 164

(Ni(OCH3)(acac) ∼68 HC 307
(CH3OH))4

acetyl fluoride CH3COF 0.35 63 NMR 288
acetyl chloride CH3COCl 0.128/0.09/

0.08
78 NMR 288

acetyl bromide CH3COBr 0.12 72 NMR 288
methyl isocyanate CH3NCO 0.62 56 46 (30) NMR-T1 253
methyl urea CH3NHCONH2 0.35 FC Clough
acetamide CH3CONH2 1 28 (11.4) NMR 308

CH3CONH2 R3c 32 1 21 INS 105
118
309

CD3COND2,
CD3CONH2

R3c 1.18 1 21.7 INS 105

paracetamol CH3CONH2C6H4OH P21/a 3.1 1 INS Prager
methylmalonamide CH3COCH2CONH2 455 kHz 129 (20) LF 280
oxo-centered
triangulochromium

(Cr3O(OOCH3)6‚
H2O)3)+Cl-‚5H2O

75/48.5/37 INS 174

carboxylate (Cr3 O(OOCH3)6‚
(H2 O)3)+ClO4

-‚5H2O
37/29 INS 174
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Table 7. CH3 Rotors, Benzene Derivatives

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

toluene C6H5CH3 P21/c 28.5 1/2 14.8 -1.2 R ) 35° 17 (30) INS 102
26.0 1/2 19.3 -9.6 R ) 17.2°

256
123
104
310

NMR-T1 311
C6D5CH3 25.8/24.7 INS 102
C6D5CD3 1.1 INS 102

NMR 312
toluene(1:1) 160/200/ INS 313
p-tert-butylcalix- 360/630 INS 314
[4]arene INS 223

2-fluorotoluene C6H4FCH3 5.8 1 32.1 5.1 1 29 (30.0) INS 315
2-bromotoluene C6H4BrCH3 0.038 NMR Langen
3-fluorotoluene C6H4FCH3 13.8 1 29.5 5.1 0 29 (30) INS 315

MW 316
4-fluorotoluene C6H4FCH3 17.6 1 21.8 7.1 1 22 (30) INS 315

MW 30
4-iodotoluene C6H4ICH3 108 1 14.8 4.5 0 10.2 (30) INS Langen
2,6-dichlorotoluene C6H3Cl2CH3 1.56 1 45 1.3 0 INS Langen
2,6-dichlorotoluene C6H3Cl2CH2D 0.2 43 (30) NMR 99
2,6-dibromotoluene C6H3Br2CH3 4.0 at T )

43 K
27 1.3 1 29 (30) NMR Jahnke

o-xylene (CH3)2C6H4 0.026 1/2 85 5.1 0 87 (30) NMR,FC 315
0.037 1/2 92 9.3 1 72 (30)

p-xylene (CH3)2C6H4 P21/n 0.97 1 50 0 55 (30) INS/
NMR

315

53.8 1.1 0 NMR 253
INS 116

p-xylene(1:2) 626 1 INS 223
p-tert-butylcalix-
[4]arene

317

m-xylene (CH3)2C6H4 25.6/14 1/2, 1/2 21.8 1.3 1 17 (30) INS 315
tetramethylbenzene
(durene)

(CH3)4C6H2 0.12 NMR 318

pentamethylbenzene (CH3)5C6H 6.3/0.67 1/5, 2/5 39 (25) INS 319
NMR 320

hexamethylbenzene (CH3)6C6 0.040/ 86.5/ NMR 321
0.033 89.0 FC 182

in C6Cl6 (CD3)6C6 0.011 47 D-NMR 322
in glassy PDB (CD3)6C6 >0.01 <50 D-NMR 322

trichloromesitylene (CH3)3Cl3C6 triclinic 4.3 1/3 31 8 R ) 150° 40 (6.95) INS 323
9.2 1/3 34.5 7.5 R ) 150°
13.1 1/3 41 7.5 R ) 150°

NMR 324
HC 55

tribromomesitylene
pure (CH3)3Br3C6 triclinic 14 1/3 25.41 4.11 R ) 172° INS 119

25.2 1/3 10.01 3.61 R ) 120°
48.9 1/3 15.0 4.8 R ) 172° NMR 55

90
3.7% in Hexabromo monoclinic 102 1 INS 325
benzene

triiodomesitylene (CH3)3I3C6 triclinic 14.4 1/3 INS 323
26.7 1/3
87.4 1/3 HC 55

1,3-dichloro- (CH3)3HCl2C6 monoclinic 451 INS 325
2,4,6-trimethyl-
benzene

1,3-dibromo- (CH3)3HBr2C6 monoclinic 390 INS 326
2,4,6-trimethyl-
benzene

toluquinone 12 MHz OS, NMR 327
4-methyl-2,6-di-tert- NMR-T1 328
butylphenol (MDBP) 37.5 12.8 15.5 (21) INS 329

NMR 121
INS 330
FC-NMR 331
NS 164

4-methyl-2,6-di-tert-
butylphenol radical

26 ENDOR 332
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Table 9. CH3 Rotors, Organometallic Compounds: Group IV and Others

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

tetramethyl lead Pb(CH3)4 Pa3 74 1/4 14.9 13.8 0 11.5 (15) INS 249
30.7 3/4 13.4 1.3 1

tetramethyl tin Sn(CH3)4 Pa3 13.2 3/4 16.6 2.7 1 22 (15) INS 349
1.72 1/4 24.2 7.2 1

NS 164
[Sn(CH3)4]x Pa3 1.72-13.8 INS 350
[Sn(CD3)4]1-x

tetramethyl metal SnxPb1-x(CH3)4 Pa3 1.7-74 INS 351
mixtures INS 352

tetramethylgermanium Ge(CH3)4 0.47 3/4 39.5 59 (15) INS 353

Table 8. CH3 Rotors, Heteroaromates

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

4-methylpyridine CH3C5NH4 520.0 1 7.3 2.2 (15) INS 333
(γ -picoline) 334

INS 335
INS 206

coupled chains INS 336
NS 337
NS 164
OS 61

CH2DC5NH4 410 INS, HC 338
INS 339
INS 335
INS 75

388 (T ) 2 K) coupled chains INS 340
436 (T ) 5 K) INS 203

CHD2C5NH4 337 coupled chains INS 340
4-methylpyridine CH3C5NH4O INS 341
N-oxide HC 55

4-methylpyridine Zn(4-CH3C5NH4)2Cl2 P21/n 146 5.2 16.8 INS 203
zinc chloride 14.3 9.9 32.1

4-methylpyridine
manganese chloride

Mn(4-CH3C5NH4)2Cl2 7.1 32.6 INS 203

4-methylpyridine
cobalt chloride

Co(4-CH3C5NH4)2Cl2 19.5 24.6 INS 203

3-methylpyridine
(â -picoline)

CH3C5NH4 10.0 <1 24.2 7.2 0 23(15) INS 342

INS 343
3,5-dimethylpyridine (CH3)2C5NH4 1.51 42(15) INS 342
(3,5-lutidine) INS 343

2,6-dimethyl pyridine (CH3)2C5NH4 186/53/30/ 18 (15) INS 204
(2,6-lutidine) 23/15/11.7 INS/NMR 342

INS 343
HC 55

2,5-dimethyl- (CH3)2C2N2S 0.014 1 101 89 (21.0) LF 344
1,3,4-thiadiazole LF 345

1-methylimidazole (CH3)C3H3N2 0.33 52 (30) NMR 346
5-methylisoxazole (CH3)C3H2NO 0.039 83.5 6.4 1 87 (30) NMR 346
3-methylpyrazole (CH3)C3N2H3 2.7 (T ) 53 K) 25.7 25.7 0 NMR 346
4-methylpyrazole (CH3)C3N2H3 FC 347

0.56 (T ) 48 K) 45.6 5.1 0 39 (30) NMR 346
3-methylfuran (CH3)C4OH3 0.55 53 4.1 1 FC 347

61.6 9.0 1 NMR 346
2-methylfuran (CH3)C4OH3 0.09 69.4 4.1 FC 347

0.19 66.8 0 65 (30) NMR 346
3-methylthiophene (CH3)C4SH3 0.53 51.4 3.1 1 FC 347

NMR-T1 253
2-methylthiophene (CH3)C4SH3 17.6 (T ) 53 K) 25.7 17.8 0 19 (30) NMR 346
2,5-dimethyl pyrazine (CH3)2C4N2H2 0.031 FC 182
tetramethylpyrazine (CH3)4C4N2 0.11/0.08/0.06 FC 318
dimethyl-s-tetrazine C2N4(CH(D)3)2
in durene (CH3)4C6H2 h(ν0 - ν*0) ) 5 OS 56

OS 57
OS 58

h(ν0 - ν*0) )
(3.5 - 5)

OS 125

in n-octane C8H18 h(ν0 - ν*0) )
154 (87)

OS 59

hν0 ) 508 3.3
in n-octane C8D18 h(ν0 - ν*0) )

90(21)
7.4 OS 108

in hexane C6H14 14.4 OS 108
OS 348
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Table 10. Ammonium Compounds

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

nickel hexaamine
hexafluorophosphate Ni(NH3)6(PF6)2 540 INS Kearley

NS 166
iodide Ni(NH3)6I2 83/68/47 INS 364

365
366

NS 164
NS 166

perchlorate Ni(NH3)6(ClO4)2 12 INS Kearley
nitrate Ni(NH3)6(NO3)2 5.56/18.94 INS 525
hexafluoroarsenate Ni(NH3)6(AsF6)2 15 INS Kearley
bromide Ni(NH)3)6Br2 8 <1 INS 367

NS 164
chlorine Ni(NH3)6Cl2 0.1 INS 367

cobalt hexaamine
hexafluorophosphate Co(NH3)6(PF6)2 542 INS 368

526
11.1 W6 ) -4.3 INS 366

NS 166
iodide Co(NH3)6I2 83/56/45 INS Kearley
bromide Co(NH3)6Br2 83/68/47 INS Kearley
perchlorate Co(NH3)6(ClO4)2 20 INS Kearley
trichlorine Co(NH3)6Cl3 4 NMR 369

9 NMR 370
5.6/4.5 INS Prager

zinc amine iodide Zn(NH3)xI2 60/40 INS Kearley
calcium hexaamine Ca(NH3)5.9 Fm3m 670 INS 371

372
373
374
107

Table 9 (Continued)

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

tetramethylsilicon Si(CH3)4 0.21/0.13 353
tetramethyltin/
germanium

Sn1-xGex(CH3)4 12 INS Prager

tetramethyltin in argon Sn(CH3)4/Ar 80 INS 354
68 355

tetramethyllead in argon Pb(CH3)4/Ar 190 INS 356
hexamethylditin Sn2(CH3)6 3-127 INS 220

(T < 14 K)
(8 lines)

Pnm21 13.7/54.3/77
(T > 14 K)

trimethyltin fluoride (CH3 )3 SnF Pnma 0.3 1 58 0 INS 218
trimethyltin chloride (CH3)3SnCl I2/c 0.89 1/3 INS 218

4.47 1/3
8.67 1/3

trimethyltin bromide (CH3)3SnBr 4.5/32.0 2/3 1/3 44.5, 27.5 11.1, 11.8 INS 218
trimethyllead chloride (CH3)3PbCl C2 1.72/3.35 1/3 1/3 48.5, 42.2 2.5, 3.7 INS 218
dimethyltin difluoride (CH3)2SnF2 I4/mmm 14.3 1 28.8 3.5 0 INS 218

NS 164
dimethyltin dichloride (CH3)2SnCl2 Imma 49 1 26.6 W3 ) 16.5 INS 357

358
NMR-T1 359

360
coupling 213

(CD3)2SnCl2 3.88 INS 358
(CH3CD3)SnCl2 57 INS 358

dimethyltin dibromide (CH3)2SnBr2 6.8/11.0 1/4 1/4 53.0, 30.1 3.4, 0.0 0 INS 218
methyltin tribromide CH3SnBr3 0.75 1/2 56 2.9 INS 218
bis(trimethyltin)sulfate
dihydrate

[(CH3)3Sn]2SO4‚
2D2O

Pbcn 1.1/11.36 2/3 1/3 52.3/32.6 3.3/6.2 1 INS 361

bis(trimethyltin)selenate [(CH3)3Sn]2SeO4‚ Pbcn 1.31 1/3 26.2 2.9 1 INS 362
dihydrate 2H2O4 3.47 1/3 20.8 1.9

21.0 1/3 14.0 3.5
tetramethyldistiban (Sb)2(CH3)4 Pnma 23 1/2 19 (15) INS Kuhnen
tetramethyldibismutan (Bi)2(CH3)4 3.35/13.8/

16.7
17 (15) INS Kuhnen

trimethylbismutan Bi(CH3)3 5.5 ∼1/3 INS Kuhnen
tetramethylstibonium (Sb(CH3)4)PF6 NMR/INS 363
hexafluorophosphate 22/42/61 Burbach

tetramethylnickel
dicyanate

(Ni(CH3)4)(SCN)2 4 INS Carlile
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Table 11. Ammonium Compounds: Hexahalo Compounds

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV)

Tmin (K)
(ωo (MHz)) technique ref

ammonium hexachloro-
palladate (NH4)2PdCl6 Fm3m 4h3m 56 (2) 1 INS 389

INS 97
INS 122
TH 390
NS 164

platinate (NH4)2PtCl6 Fm3m 4h3m 34 (2) 1 INS 389
LS 391
LS 45
TH 390
NS 164

iridate (NH4)2IrCl6 Fm3m 4h3m 18.8 (2) 1 INS 389
TH 390
NS 164

osmate (NH4)2OsCl6 Fm3m 4h3m 11.6 (2) 1 INS 389
NS 164

stannate (NH4)2SnCl6 Fm3m 4h3m 2.96 (2) 1 INS 392
LS 45
TH 393
TH 394
TH 390

(ND4)2SnCl6 Fm3m 4h3m 0.044 (2) 1 61.1 60 (5.7) D-NMR 395
(A-E) 396

397
398
399

TH 283
(NH4-nDn)2SnCl6 (1/0.3/0.08) TH 400
n ) 1,2,3

rhenate (NH4)2ReCl6 Fm3m 4h3m 8.4 (2) 1 INS 389
TH 390

plumbate (NH4)2PbCl6 Fm3m 4h3m 0.14 NMR 401
NMR 402
LS 45
TH 390

Table 10 (Continued)

compound
name

compound
formula

crystal
structure

νt
(µeV)

occurrence
ratio

V3
(meV)

V6
(meV) k

Tmin (K)
(ωo (MHz)) technique ref

Ca(ND3)5.93 Fm3m 315 INS 371
107

Yb(NH3)∼6 Fm3m e100 INS 375
Hofmann clathrate Ni(NH3)2M(CN)4* tetragonal

2C6D6 P4/m
M ) Ni tetragonal 700 V12 ) 16 INS 74

INS 376
710 INS 377

209
M ) Zn 710 INS 377
M ) Cu 698 INS 377
M ) Fe 681 INS 377
M ) Mn 703 INS 377

Hofmann clathrate Ni(NH3)2Ni(CN)4 unknown 86/142 2:1 INS 377
ammonia on NH3/MgO 4 mm
magnesium oxide 0.2 monolayer 618 rotation- INS 378

0.5 monolayer 484 translation- INS 378
coupling 209

INS 208
INS 379

ammonia in argon NH3/Ar 745 INS 380
648/740 INS 381

INS 382
NH2D/Ar 555 INS 382
NHD2/Ar 437 INS 382

ammonia-argon NH3-Ar FIR 383
384

ammonia in nitrogen NH3/N2 Pa3 638 INS 381
ammonia dimers (NH3)2 TH 385

TH 185
TH 386

ammonia in cesium (NH3)xCsC28 26/89/126 INS 387
intercalated graphite INS 388
ammonia in rubidium
fullerite

Rb3C60(NH3)x 220 INS 221
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Table 12. Ammonium Compounds, Others and BH4

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV)

Tmin (K)
(ωo (MHz)) technique ref

ammonium bromine NH4Br cubic 5.1 kHz 1 155 166 (30) NMR 409
410

(9.6 kHz) TH 393
ammonium iodide NH4I tetragonal 71.5 kHz 1 136.6 128 (17) NMR 409

410
(96 kHz) TH 393

ammonium/
kalium halides
iodide (NH4).023K.977I Fm3m 4h3m 530-1200 (4) 1 INS 411

412
413

bromide (NH4).005K.995Br Fm3m 4h3m 1200 (3) 1 INS 411
INS/HC 414

ammonium-alkali (NH4)cM1-cX Fm3m 600 INS 415
mixed halides [M ) K, RB;

X ) I, Br, Cl]
416

(NH4).045 K0.955I
(NH4).032K.968Br Fm3m 515 TH 417

INS 415
HC 55

416
(NH4).031K.969Cl Fm3m 480 INS 415
(NH4).03Rb.97I Fm3m 570/1250 INS 418
(NH4).03Rb.97Br Fm3m 470 INS 418
(NH4).03Rb.97Cl Fm3m 410 INS 418

ammonium perchlorate NH4ClO4 Pnma m 11.3 (5) 1 INS 419
LS 45
INS 420
INS 421

120-360(?) IR 422
(8.3/8.4/10.2) TH 423

NS 164
ND4ClO4 0.088(A-E) 1 31.1 32 (6.6) NMR-LS 391

424
0.079(A-E) D-NMR 425

ND3HClO4,
NH3DClO4

TH 231

NH3DClO4 ∼3 39 INS 407
ammonium tetrachloro-
zincate (NH4)2ZnCl4 0.21 (4) NMR 426

427
palladate (NH4)2PdCl4 0.1 (3) FC Vandemaele
platinate (NH4)2PtCl4 0.1 (3) FC Vandemaele

ammonium tetraphenyl NH4B(C6H5)4 small OS,IR 428
borate 429

430
431

62 IR,OS 432
ammonium NH4BF4 Pnma IR,OS 433
tetrafluoroborate NH3DBF4

Table 11 (Continued)

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV)

Tmin (K)
(ωo (MHz)) technique ref

tellurate (NH4)2TeCl6 Fm3m 4h3m 0.11 FC 303
TH 390

ammonium hexabromo-
platinate (NH4)2PtBr6 3 6 (4) INS 403
stannate (ND4)2SnBr6 D-NMR 404

ammonium/potassium
hexachlorostannate

(NH4)2-2xK2x
SnCl6

4h 3 (2) INS 405

ammonium hexafluoro-
phosphate NH4PF6 2 5 (7) INS 406

NH3DPF6 ∼1.8 INS 407
antimonate NH4SbF6 5 (>2) INS Kearley
germanate (NH4)2GeF6 P3m1 3m LS 45

0.03 NMR 408
0.4 TH 113

silicate (NH4)2SiF6 Fm3m 4h3m 0.04 TH 113
P3m1 3m 0.5 TH 113

(NH3D)2SiF6 Fm3m TH 390
titanate (NH4)2TiF6 P3m1 3m (0.09) TH 113
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Table 13. Methane, Silane, and Germane

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV)

Tmin (K)
(ωo (MHz)) technique ref

light methane
phase II CH4 (II) Fm3c 4h2m 142 3/4 23.9 INS 2

432 1090 1/4
NMR 48
TH 233
TH 442
TH 443
INS 444
INS 97
INS 445
INS 14
INS 446
INS 186
NS 175
TH 447
NS 165

phase III CH4 (III) 180 (8) 1/2:1/4:1/4 INS 222
HC 54

heavy methane
phase III CD4 (III) 8 (8) 1/2:1/4:1/4 INS 448
phase II CD4 (II) Fm3c 4.3/2.2 IR 64

IR 449
(4/434) TH 447

partially deuterated CH3D (II) Fm3c 4h2m 82 (4) 3/4 INS 450
methanes (52/760-892) TH 400

CH3D (III) 130(6) INS 451
CH2D2 (III) 70(4) INS 451
CHD3 (III) 15 INS 451

silane SiH4 tetragonal 0.2 FC 452
(phase II) NMR 453

IR 454
IR 455

germane GeH4 tetragonal 0.05 IR 454
(phase IV) IR 455

Table 14. Methane, Mixed Systems

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV)

Tmin (K)
(ωo (MHz)) technique ref

methane/rare
gas mixtures
Krypton (CH4)0.73Kr0.27 INS 456

(CH4)>0.8Kr<0.2 Fm3c 432 1090 1/4 INS 457
4h3m 140 3/4

(CH4)0.01Kr0.99 Fm3m 432 970 1 INS 275
INS 458
IR 459
INS 460
INS 461
INS 186
INS 175

CH3D 690/840 85

Table 12 (Continued)

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV)

Tmin (K)
(ωo (MHz)) technique ref

ammonium perrhenate NH4ReO4 0.013 NMR 408
NS 164

ammonium sulfate (NH4)2SO4 LS 45
(NH3D)2SO4 1/2, 1/2 196/140 IR 434

ammonium cobalt (NH4)2Co(H2O)6- P21/a 1/νt ) 0.2 h, IR 65
sulfate (Tutton salt) (SO4)2, (NH3D)-

Co(H2O)6(SO4)2
0.08 h IR 435

ammonium nitrate NH4NO3 orthorhombic 1/νt ) 1 h 110 436
(phase V)

ammonium alkali metal (NH4)xKySO4 OS 437
sulfates (NH4)xRbySO4 OS 438

ammonium persulfate NH4S2O7 1.1 INS,
LC-NMR

439

INS
sodium tetrahydroborate NaBH4 0.009 MW,TH 440

441
poly(ammonium
styrene sulfonate)

OS 438
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Table 15. Methane on Surfaces

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV)

Tmin (K)
(ωo (MHz)) technique ref

methane on grafoil CH4/C C3v 112 (5) 1 INS 470
471

TH 472
INS 96
INS 473

(92/112) TH 400
HC 55
HC 474

CH3D/C 55 (5) INS 475
111

(16) TH 400
HC 55

(CH4)xKr1-x/C 800 (g 2) INS 476
477

methane on
magnesium oxide

CH4/MgO(100) C2v 70-451(8) 2.6 INS 478

monolayer 55-457 (8) INS 479
doublelayer 55-457 (8) INS 479

880-1080 (3)
(216) TH 400

CH3D/MgO(100) 140 INS Larese
(54) TH 400

methane in Cs
intercalated

C24Cs(CH4) <1 480

graphite 481
482

C28Cs(CD4) 483
methane in silica CH4/SiO2 (50-1100) 1 INS 484

471
methane in docecasil 3C <1100 484
methane in silica gel 100 <1100 484
methane in MCM-41 <400 484

Table 16. Hydrogen

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV) technique ref

hydrogen in cesium C24Cs(H2)x 799 2 sites 485
intercalated graphite 486

hydrogen in rubidium C24Rb(H2)x 595/1170/1340 2 sites INS 485
intercalated graphite 486

Table 14 (Continued)

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV)

Tmin (K)
(ωo (MHz)) technique ref

Argon (CH4)0.01Ar0.99 Fm3m 432 890 1 INS 458
IR 459

900 2/3 INS 462
INS 186

175
600 1/3 INS 98
750/920 INS 463

(CH4-nDn)0.01/Ar0.99 460-910 INS 110
CH3D 650/760 85
CHD3 515 86

464
Xenon (CH4)0.016Xe0.984 Fm3m 432 1130 1 INS 458

IR 459
∼990 IR/TH 465

INS 186
INS 175
INS 466

Neon (CH4)0.02Ne0.98 <1000 INS 467
methane/
deuteriomethane

(CH4)1-x(CD4)x (II) 75/143 3/4 468

(CH4)1-x(CD4)x (III) <160(12)
1077 1/4

methane in nitrogen CH4 in N2 hcp 3h IR 62
1010 469
400-1010

methane in argon/
nitrogen

CH4 in Ar/N2 fcc/hcp <880 INS 469
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Table 17. Translational Tunneling

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV) technique ref

hydrogen chlorine dimers (HCl)2 1920 63
496
497

hydrogen sulfide in
potassium chlorine

H2S/KCl 2000 INS 498

hydrogen sulfide-carbon
dioxide vdW complex

H2S-CO2 499

hydrogen chlorine-diborane HCl-B2H6 500
hydrogen chlorine in
hydrochinone clathrate

HCl 4300 INS 501

hydrogen fluoride dimers (HF)2 502
80 503

water dimers (H2O)2 504
505
506
507

hydroxyl in NaCl OH--NaCl 508
water-carbon monoxide H2O-CO 509
water-argon complex H2O-Ar 384
H2O in argon fcc 2850 INS 510

INS 511
sulfur dioxide-argon SO2-Ar 512
acetylene-carbon dioxide ((C2H2)2, (CO2)2 513
dimers C2H2-CO2 514

hydrogen in meso-
tetrapheylporphine

2H in 4N 5 Hz 515

hydrogen in tantal TaO0.0006D0.0025 bcc 65 AR
hydrogen in yttrium YO0.002H0.016 hcp AR
hydrogen in niobium Nb(CH)0.0002 162 INS

Nb(OH)0.0002 226 INS
hydrogen in
niobium-titanium

Nb1-xTixHy 200/400 INS

hydrogen in
niobium-zirconium

Nb1-xZr0.0045Hy 4 levels 519

carboxylic acid dimers (CH3COOH)2 (140-250) kHz SQUID-NMR 520
benzoic acid dimers (HCOOH)2 242

521
NMR 24
NMR 522
NMR 523
OS 61

tetrafluoroterephtalic acid (X-COOH)2 524

Table 16 (Continued)

compound
name

compound
formula

crystal
structure

site
symmetry

νt
(µeV)

occurrence
ratio

potential
(meV) technique ref

hydrogen in argon H2/Ar 14500 INS 487
hydrogen in CoNaA zeolite 3800 55-60 INS 488
H2 in M(CO)3(R3)2 (η2-H2) M ) W, R ) i-C3H7 90 INS 489

INS 490
M ) W, R ) C6H11 110 96 INS 491

INS 489
INS 490

M ) Mo, R ) C6H11 350 INS 490
M ) Cr, R ) C6H11 537 INS 492

INS 490
H2 in Mo(CO)(η2-H2)- X ) 4.5C6D6 1560 INS 490
(dppe-d20)2‚X X ) 2C6D5CD3 2140 INS 490

other H2 complexes trans (Fe(ηH2) INS 493
(H)(H2CH2PPh2)2)BF4 260 100 INS 490
MH(η2-H2)PPh3 BPh3 INS 494
M ) Fe 143 79 INS 490
M ) Ru 320 59 INS 490
IrClH2(η2-H2)(P-i-Pr3)2 2460 22 INS 495

INS 490
[FeH(H2)(dppe)]BF4 260 INS 490
[FeH(H2)(PP3)]+ 91 INS 490
FeH(H2)(PEtPh2)3 793 INS 490
RuH2(H2)2(PC6H11)2 535 48 INS 490
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6. Outlook
Tunnelling spectroscopy using neutrons started in

the 1970s as an exotic application of high-resolution
neutron spectroscopy. Neutron scattering, compared
to NMR, quickly proved to be a very direct and
powerful method for studying molecular tunneling.
Once a quantitative understanding of the scattering
function in the mean-field single particle model
(SPM) was established, the technique became ready
for standard application.
As in vibrational spectroscopy, the originally simple

SPM required a variety of extensions, mainly taking
into account various types of interaction, from di-
rectly coupled methyl groups to rotation-transla-
tion-coupling. The development of specific models
is needed for many new complex systems under
study. Such systems are described by multidimen-
sional potential surfaces. A broader spectroscopic
access is required to characterize such potential
surfaces.
One of the most promising future applications of

tunneling spectroscopy is to combine it with computer
modeling (molecular dynamics (MD)) and to extract
better intermolecular pair potentials (IPP). In par-
ticular, the repulsive part of these potentials can be
improved substantially. Remember that no other
excitation than tunneling is so sensitive to small
changes of the potential surface. Potential surfaces
of excited molecular states can also be explored in
special cases. Phenomenological transferable pair
potentials still play the most important role in
exploring reaction paths ahead of real chemical
manufacturing or in characterizing the interaction
between two molecules in biological systems.
The evolution of the dynamical behavior of a

methyl group coupled to the thermal bath of phonons,
revealed by the temperature dependence of the
scattering function, can be considered as the model
system par excellence describing the transition from
quantum to classical mechanics. Such data offer a
basis to test fundamental concepts of solid-state
physics. For rotation-translation coupled systems
increasing temperature leads to a transition from
ordered to chaotic trajectories. This phenomenon will
probably lead to future studies of the temperature
dependence of rotational tunneling of appropriate
systems.
Finally, tunneling is a fundamental process influ-

encing dynamical properties of many different ma-
terials. For example, the low-temperature properties
of glasses are widely determined by two level tun-
neling states. The similarity of the concepts applied
in both fields, rotational and translational tunnel-
ing,27 should enable significant mutual progress to
be made.
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dependence of tunnelling and librational modes of coupled
methyl groups in lithium acetate. Z. Phys. 1987, B66, 75.

(299) Heidemann, A.; Clough, S.; McDonald, P. J.; Horsewill, A. J.;
Neumaier, K. Tunnelling motions of methyl groups in manga-
nese acetate tetrahydrate. Z. Phys. 1985, B58, 141.

(300) Clough, S.; Heidemann, A.; Paley, M. N. J.; Suck, J. B. Methyl
tunnelling and torsion in acetates: The shape of the hindering
potential. J. Phys. 1980, C13, 6599.

(301) Clough, S.; Heidemann, A.; Paley, M. N. J. The temperature
dependence of methyl tunnelling motion in three acetates. J.
Phys. 1981, C14, 1001.

(302) Coppens, P.; van Gerven, L.; Clough, S.; Horsewill, A. J. Methyl
Zeeman-tunnel resonance and nuclear spin relaxation in copper
acetate. J. Phys. 1983, C16, 567.

(303) Vandemaele, G.; Buckenhoudt, A.; van Gerven, L. Zeeman-
tunnel resonance line shapes in NMRRR investigations of rota-
tional tunnelling. In Springer Proceedings in Physics; Springer:
Berlin, 1987; Vol. 17, p 72.

(304) Mahgoub, A. S.; Clough, S. Quantum tunnelling and hopping of
methyl groups in cadmium acetate dihydrate. J. Phys. 1985,
C18, 647.

(305) Aibout, A. Rotational tunnelling in methyl acetate. Thesis,
Nottingham, 1990.

(306) Takeda, S.; Kataoka, H.; Ikeda, S.; Yamaguchi, K. Rotational
tunnelling of methyl groups of Sc(CH3 OO)3 and Sc(CD3 OO)3.
Physica 1996, B226, 174.

(307) Sorai, M.; Yoshikawa, M.; Arai, N.; Suga, H.; Seki, S. Heat
capacity of [Ni(OCH3)(acac)(CH3OH)]4 from 0.4 to 285K: Spin
interaction and tunnel-splitting of internal rotation of methyl
groups. J. Phys. Chem. 1978, 39, 413.

(308) Watanabe, S.; Abe, Y.; Yoshizaki, R. Proton spin lattice relax-
ation from tunnelling methyl groups in rhombohedral acetamide.
J. Phys. Soc. Jpn. 1985, 54, 4061.

(309) Prager, M.; Wakabayashi, N.; Monkenbusch, M. A consistent
view of methyl rotational tunnelling and lattice dynamics in
acetamide. Physica 1994, B202, 252.

(310) Prager, M.; Monkenbusch, M.; Ibberson, R. M.; David, W. I. F.;
Cavagnat, D. Methyl rotational potentials and transferable pair
potentials in toluene. J. Chem. Phys. 1993, 98, 5653.

(311) Haupt, J.; Müller-Warmuth, W. Kernrelaxation und Quanten-
effekte bei der Methylgruppenrotation von festern Toluol und
Toluolderivaten. Z. Naturforsch. 1969, 24a, 1066.

(312) van der Putten, C.; Diezemann, G.; Fujara, F.; Hartmann, K.;
Sillescu, H. Methyl group dynamics in R -crystallized toluene
as studied by deuteron spin-lattice relaxation. J. Chem. Phys.
1992, 96, 1748.

(313) Caciuffo, R.; Francescangeli, O.; Melone, S.; Prager, M.; Ugozzoli,
F.; Andreeti, G. D.; Amoretti, G.; Coddens, G.; Blank, H. An

almost free methyl quantum rotor in p-tert-butylcalix[4]arene-
(1:1)toluene. Physica 1992, B180-181, 691.

(314) Caciuffo, R.; Amoretti, G.; Fillaux, F.; Francescangeli, O.; Melone,
S.; Prager, M.; Ugozzoli, F. A new class of compounds suited to
study the torsional dynamics in the quantum regime: the
calixarenens. Chem. Phys. Lett. 1993, 201, 427.

(315) Prager, M.; Hempelmann, R.; Langen, H.; Müller-Warmuth, W.
Methyl tunnelling and rotational potentials in solid xylenes and
fluorotoluenes. J. Phys.: Condens. Matter 1990, 2, 8625.

(316) Rudolph, H. D.; Trinkaus, A. Mikrowellenspektrum, Hinderung-
spotential der inneren Rotation und Dipolmoment des meta-
Fluorotoluols. Z. Naturforsch. 1968, 23a, 68.

(317) Prager, M.; Caciuffo, R.; Amoretti, G.; Carlile, C. J.; Coddens,
G.; Fillaux, F.; Francescangeli, O.; Ugozzoli, F. Molecular
tunnelling in p-tert-butylcalix[4]arene(2:1)p-xylene. Mol. Phys.
1994, 81, 609.

(318) Takeda, S.; Chihara, H. Methyl rotation in 1,2,4,5-tetrameth-
ylbenzene and tetramethylpyrazine in the solid state. Tunnelling
spectra by proton NMR. J. Magn. Res. 1983, 54, 285.

(319) Clough, S.; Horsewill, A. J.; Heidemann, A. Neutron scattering
study of methyl tunnelling in pentamethylbenzene. Chem. Phys.
Lett. 1981, 82, 264.

(320) Gabrys, B.; van Gerven, L. Rotational tunnelling of methyl
groups in pentamethylbenzene studied by NMR relaxation
resonance. Chem. Phys. Lett. 1981, 82, 260.

(321) Takeda, S.; Soda, G.; Chihara, H. Evidence of coupled rotational
tunnel states of methyl groups of hexamethylbenzene by nuclear
magnetic resonance. Solid. State Commun. 1980, 36, 445.

(322) Börner, K.; Diezemann, G.; Rössler, E.; Vieth, H. M. Low-
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free rotors in Hofmann clathrates. Physica 1996, B226, 194.

(378) Havighorst, M.; Prager, M.; Coddens, G. Rotational tunnelling
of ammonia onMgO(100) surfaces. Chem. Phys. Lett. 1994, 222,
113.

(379) Havighorst, M.; Prager, M. Rotation translation coupling in the
quantum regime: NH3 on MgO{100} surfaces and in Hofmann
clathrates. Physica 1996, B226, 178.

(380) Prager, M.; Carlile, C. J. The rotational potential of NH3 in rare
gases: a neutron scattering study. Chem. Phys. Lett. 1990, 173,
524.

(381) Havighorst, M.; Prager, M.; Langel, W. Rotational tunnelling
and ammonia sites in Ar and N2 matrices. Physica 1992, B180-
181, 674.

(382) Havighorst, M.; Prager, M.; Carlile, C. J. Rotational excitations
of partially deuterated ammonia NH3-nDn in argon matrices.
Physica 1994, B202, 355.

(383) Schmuttenmaer, C. A.; Cohen, R. C.; Loeser, J. G.; Saykally, R.
J.; Far-infrared vibration-rotation-tunnelling spectroscopy of
Ar-NH3: Intermolecular vibrations and effective angular poten-
tial energy surface. J. Chem. Phys. 1991, 95, 9.

(384) Zwart, E.; Meerts, W. L. The submillimeter rotation-tunnelling
spectrum of Ar - D2O and Ar - NH3. Chem. Phys. 1991, 151,
407.

(385) Havenith, M.; Cohen, R. C.; Busarow, K. L.; Gwo, D.-H.; Lee, Y.
T.; Saykally, R. J. Measurement of the intermolecular vibration-
rotation-tunnelling spectrum of the ammonia dimer by tunable
far infrared laser spectroscopy. J. Chem. Phys. 1991, 94, 4776.

(386) Heineking, N.; Stahl, W.; Olthof, E. H. T.; Wormer, P. E. S.; van
der Avoird, A. The nuclear quadrupole coupling constant and
the structure of the para-para ammonia dimer. J. Chem. Phys.
1995, 102, 8693.

(387) Carlile, C. J.; McL. Jamie, I.; White, J. W.; Prager, M.; Stead,
W. Rotational tunnelling of ammonia in two-dimensional metal-
ammonia solutions. J. Chem. Soc. Faraday Trans. 1991, 87, 73.

(388) Carlile, C. J.; McL. Jamie, I.; Lockhart, G.; White, J. W. Two-
dimensional caesium-ammonia solid solutions in C28Cs(NH3)x.
Mol. Phys. 1992, 76, 173.

(389) Prager, M.; Svare, I. Tunnel splittings in ammonium hexachlo-
rides. J. Phys. 1983, C16, L181.

(390) Smith, D. The derivation of the rotational potential function from
atom-atom potentials. I. Ammonium-chlorine compounds. J.
Chem. Phys. 1985, 82, 5133.

(391) Lalowicz, Z. T.; Punkkinen, M.; Ylinen, E. E. A level-crossing
relaxation study ofND4+ ion tunnelling frequencies in ND4ClO4
and (ND4)2PtCl6. J. Phys. 1979, C12, 4051.

(392) Prager, M.; Press, W.; Alefeld, B.; Hüller, A. Rotational states
of the NH4

+ ion in (NH4)2SnCl6 by inelastic neutron scattering.
J. Chem. Phys. 1977, 67, 5126.

(393) Smith, D. Activation energies and tunnelling frequencies of
ammonium halides and ammonium hexachlorides. J. Chem.
Phys. 1981, 74, 6480.

(394) Müller, T. W.; Hüller, A. The rotational potential in the am-
monium hexahalometallates. J. Phys. 1982, C15, 7295.

Rotational Tunneling and Neutron Spectroscopy Chemical Reviews, 1997, Vol. 97, No. 8 2963



(395) Ingman, L. P.; Koivula, E.; Lalowicz, Z. T.; Punkkinen, M.;
Ylinen, E. E. 2H-NMR study of ammonium ion rotational
tunnelling and reorientation in (ND4)2SnCl6 single crystals: I.
Tunnelling frequency measurements. Z. Phys. 1987, B66, 363.

(396) Ingman, L. P.; Koivula, E.; Lalowicz, Z. T.; Punkkinen, M.;
Ylinen, E. E. Rotational tunnelling effects in 2H-NMR spectra
of polycrystalline (ND4)2SnCl6. J. Chem. Phys. 1988, 88, 58.

(397) Ingman, L. P.; Lalowicz, Z. T.; Punkkinen, M.; Ylinen, E. E. 2H-
NMR study of ammonium ion rotational tunnelling and reori-
entation in (ND4)2SnCl6 single crystal: II T level structure. Z.
Phys. 1990, B80, 104.

(398) Ingman, L. P.; Koivula, E.; Lalowicz, Z. T.; Punkkinen, M.;
Ylinen, E. E. 2H-NMR study of ammonium ion rotational
tunnelling and reorientation in (ND4)2SnCl6 single crystal: III
Low magnetic field measurements. Z. Phys. 1990, B81, 175.

(399) Ingmann, L. P.; Koivula, E.; Punkkinen, M.; Ylinen, E. E.;
Lalowicz, Z. T. Deuteron spin-lattice relaxation in (ND4)2SnCl6
below 60 K. Physica 1990, B162, 281.

(400) Smith, D. A study of the tunnelling frequencies of CH3D in
various crystalline environments. Chem. Phys. 1992, 164, 407.

(401) Punkkinen, M.; Tuohi, J. E.; Ylinen, E. E. Temperature depen-
dence of the tunnelling splitting in (NH4)2PbCl6. Chem. Phys.
Lett. 1975, 36, 393.

(402) Svare, I. Temperature dependence of tunnelling frequency in
ammonium lead hexachloride. J. Phys. 1979, C12, 3907.

(403) Kearley, G. J.; Blank, H. Rotational tunnelling of the NH4
+ ion

in phase II of (NH4)2PtBr6 by inelastic neutron scattering
spectroscopy. J. Chem. Phys. 1988, 89, 1199.

(404) Lalowicz, Z. T.; Serafin, R.; Punkkinen, M.; Vuorimaeki, A. H.;
Ylinen, E. E. Deuteron NMR spectra of ND4 tunnelling at low
frequencies in (ND4)2 SnBr6. Z. Naturforsch. 1995, 50A, 373.

(405) Prager, M.; Press, W.; Roessler, K. Rotational tunnelling of
tetrahedral molecules in mixed crystals: neutron spectroscopy.
J. Mol. Struct. 1980, 60, 173.

(406) Kearley, G. J.; Cockcroft, J. K.; Fitch, A. N.; Fender, B. E. The
inelastic neutron scattering spectrum of rotational tunnelling
in phase III of NH4PF6. J. Chem. Soc., Chem. Commun. 1986,
1986, 1738.
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